Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To calculate the molar solubility of lead(II) carbonate (PbCO₃) when its solubility product constant ([tex]\( K_{sp} \)[/tex]) is given as [tex]\( 1.5 \times 10^{-15} \)[/tex] at [tex]\( 25^{\circ} \, C \)[/tex], we need to follow these steps:
1. Understand the Dissociation Equation:
Lead(II) carbonate (PbCO₃) dissociates in water according to the following equilibrium equation:
[tex]\[ \text{PbCO}_3 (s) \leftrightharpoons \text{Pb}^{2+} (aq) + \text{CO}_3^{2-} (aq) \][/tex]
2. Define the Molar Solubility:
Let [tex]\( S \)[/tex] represent the molar solubility of PbCO₃. This means at equilibrium, the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex] will both be [tex]\( S \)[/tex].
3. Write the Solubility Product Expression:
The expression for the solubility product [tex]\( K_{sp} \)[/tex] in terms of [tex]\( S \)[/tex] is:
[tex]\[ K_{sp} = [\text{Pb}^{2+}][\text{CO}_3^{2-}] \][/tex]
Substituting [tex]\( S \)[/tex] for the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex]:
[tex]\[ K_{sp} = S \cdot S = S^2 \][/tex]
4. Solve for [tex]\( S \)[/tex]:
Given [tex]\( K_{sp} = 1.5 \times 10^{-15} \)[/tex],
[tex]\[ S^2 = 1.5 \times 10^{-15} \][/tex]
To find [tex]\( S \)[/tex], take the square root of both sides:
[tex]\[ S = \sqrt{1.5 \times 10^{-15}} \][/tex]
5. Calculate the Square Root:
[tex]\[ S \approx 3.872983346207417 \times 10^{-8} \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\( \text{PbCO}_3 \)[/tex] is approximately [tex]\( 3.9 \times 10^{-8} \, \text{M} \)[/tex].
Out of the given options, the closest and correct value is:
[tex]\[ \boxed{3.9 \times 10^{-8} \, \text{M}} \][/tex]
1. Understand the Dissociation Equation:
Lead(II) carbonate (PbCO₃) dissociates in water according to the following equilibrium equation:
[tex]\[ \text{PbCO}_3 (s) \leftrightharpoons \text{Pb}^{2+} (aq) + \text{CO}_3^{2-} (aq) \][/tex]
2. Define the Molar Solubility:
Let [tex]\( S \)[/tex] represent the molar solubility of PbCO₃. This means at equilibrium, the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex] will both be [tex]\( S \)[/tex].
3. Write the Solubility Product Expression:
The expression for the solubility product [tex]\( K_{sp} \)[/tex] in terms of [tex]\( S \)[/tex] is:
[tex]\[ K_{sp} = [\text{Pb}^{2+}][\text{CO}_3^{2-}] \][/tex]
Substituting [tex]\( S \)[/tex] for the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex]:
[tex]\[ K_{sp} = S \cdot S = S^2 \][/tex]
4. Solve for [tex]\( S \)[/tex]:
Given [tex]\( K_{sp} = 1.5 \times 10^{-15} \)[/tex],
[tex]\[ S^2 = 1.5 \times 10^{-15} \][/tex]
To find [tex]\( S \)[/tex], take the square root of both sides:
[tex]\[ S = \sqrt{1.5 \times 10^{-15}} \][/tex]
5. Calculate the Square Root:
[tex]\[ S \approx 3.872983346207417 \times 10^{-8} \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\( \text{PbCO}_3 \)[/tex] is approximately [tex]\( 3.9 \times 10^{-8} \, \text{M} \)[/tex].
Out of the given options, the closest and correct value is:
[tex]\[ \boxed{3.9 \times 10^{-8} \, \text{M}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.