Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's calculate the time spent in the air for Norma's soccer ball step-by-step.
### Step 1: Identify the Given Information
1. Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
2. Angle ([tex]\( \theta \)[/tex]): 30 degrees
3. Gravitational acceleration ([tex]\( g \)[/tex]): 9.81 meters per second squared
4. Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to ground level)
### Step 2: Convert the Angle to Radians
To use trigonometric functions, we need to convert the angle from degrees to radians.
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{rad}} = 30 \times \frac{\pi}{180} = \frac{\pi}{6} \][/tex]
### Step 3: Calculate the Vertical Component of the Initial Velocity
The initial velocity in the vertical direction ([tex]\( v_y \)[/tex]) can be calculated using the sine function:
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
[tex]\[ v_y = 10 \sin\left(\frac{\pi}{6}\right) \][/tex]
Using the fact that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]:
[tex]\[ v_y = 10 \times \frac{1}{2} = 5 \text{ m/s} \][/tex]
### Step 4: Use the Vertical Motion Equation
The vertical displacement ([tex]\( \Delta y \)[/tex]) equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a \Delta t^2 \][/tex]
Since [tex]\(\Delta y\)[/tex] is 0, we set up the quadratic equation:
[tex]\[ 0 = 5\Delta t + \frac{1}{2}(-9.81)(\Delta t^2) \][/tex]
[tex]\[ 0 = 5\Delta t - 4.905(\Delta t^2) \][/tex]
### Step 5: Simplify and Solve the Quadratic Equation
Rewriting the equation in a standard quadratic form:
[tex]\[ 4.905(\Delta t^2) - 5\Delta t = 0 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t(4.905\Delta t - 5) = 0 \][/tex]
This gives us two solutions:
[tex]\[ \Delta t = 0 \text{ seconds} \][/tex]
[tex]\[ 4.905\Delta t = 5 \][/tex]
[tex]\[ \Delta t = \frac{5}{4.905} \approx 1.019 \text{ seconds} \][/tex]
Given that [tex]\(\Delta t = 0\)[/tex] represents the initial kick, we disregard it and take the positive time value.
### Step 6: Round the Time to the Nearest Hundredth
The time spent in the air:
[tex]\[ \Delta t \approx 1.019 \text{ seconds} \][/tex]
Rounding to the nearest hundredth:
[tex]\[ \Delta t \approx 1.02 \text{ seconds} \][/tex]
Therefore, the time spent in the air is approximately 1.02 seconds.
### Step 1: Identify the Given Information
1. Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
2. Angle ([tex]\( \theta \)[/tex]): 30 degrees
3. Gravitational acceleration ([tex]\( g \)[/tex]): 9.81 meters per second squared
4. Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to ground level)
### Step 2: Convert the Angle to Radians
To use trigonometric functions, we need to convert the angle from degrees to radians.
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{rad}} = 30 \times \frac{\pi}{180} = \frac{\pi}{6} \][/tex]
### Step 3: Calculate the Vertical Component of the Initial Velocity
The initial velocity in the vertical direction ([tex]\( v_y \)[/tex]) can be calculated using the sine function:
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
[tex]\[ v_y = 10 \sin\left(\frac{\pi}{6}\right) \][/tex]
Using the fact that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]:
[tex]\[ v_y = 10 \times \frac{1}{2} = 5 \text{ m/s} \][/tex]
### Step 4: Use the Vertical Motion Equation
The vertical displacement ([tex]\( \Delta y \)[/tex]) equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a \Delta t^2 \][/tex]
Since [tex]\(\Delta y\)[/tex] is 0, we set up the quadratic equation:
[tex]\[ 0 = 5\Delta t + \frac{1}{2}(-9.81)(\Delta t^2) \][/tex]
[tex]\[ 0 = 5\Delta t - 4.905(\Delta t^2) \][/tex]
### Step 5: Simplify and Solve the Quadratic Equation
Rewriting the equation in a standard quadratic form:
[tex]\[ 4.905(\Delta t^2) - 5\Delta t = 0 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t(4.905\Delta t - 5) = 0 \][/tex]
This gives us two solutions:
[tex]\[ \Delta t = 0 \text{ seconds} \][/tex]
[tex]\[ 4.905\Delta t = 5 \][/tex]
[tex]\[ \Delta t = \frac{5}{4.905} \approx 1.019 \text{ seconds} \][/tex]
Given that [tex]\(\Delta t = 0\)[/tex] represents the initial kick, we disregard it and take the positive time value.
### Step 6: Round the Time to the Nearest Hundredth
The time spent in the air:
[tex]\[ \Delta t \approx 1.019 \text{ seconds} \][/tex]
Rounding to the nearest hundredth:
[tex]\[ \Delta t \approx 1.02 \text{ seconds} \][/tex]
Therefore, the time spent in the air is approximately 1.02 seconds.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.