Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
60.0 m
Step-by-step explanation:
You want the height of a bridge when the angle of elevation to its top is 26.6° from a point, and 71.7° from a point 100 m closer.
Tangent
The tangent relation for sides of a right triangle is ...
Tan = Opposite/Adjacent
Using the designations in the second attachment, this means ...
[tex]\tan(26.6^\circ)=\dfrac{HX}{AX}\\\\\\\tan{(71.7^\circ)}=\dfrac{HX}{BX}[/tex]
Solution
We want an expression for the difference AX-BX. Solving each of these equations for AX and BX, we can then solve for HX.
[tex]AX-BX=\dfrac{HX}{\tan(26.6^\circ)}-\dfrac{HX}{\tan(71.7^\circ)}\\\\\\HX=\dfrac{100\text{ m}}{\dfrac{1}{\tan(26.6^\circ)}-\dfrac{1}{\tan(71.7^\circ)}}\approx60.0\text{ m}[/tex]
The height of the bridge is about 60.0 meters.


Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.