Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly, let's solve each part of the problem step by step.
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.