Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given equations is quadratic in form, we need to identify the equation that can be written in the standard quadratic form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Let's look at each equation step by step.
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.