Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data, we need to follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.