Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's find the interquartile range (IQR) for each set and then compare them. The interquartile range is the difference between the upper quartile (Q3) and the lower quartile (Q1).
### Set 1:
- Lower Quartile ([tex]\(Q1\)[/tex]) = 30
- Upper Quartile ([tex]\(Q3\)[/tex]) = 53.5
The interquartile range (IQR) is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 \][/tex]
[tex]\[ \text{IQR} = 53.5 - 30 \][/tex]
[tex]\[ \text{IQR} = 23.5 \][/tex]
So, the interquartile range for Set 1 is [tex]\(23.5\)[/tex].
### Set 2:
- Lower Quartile ([tex]\(Q1\)[/tex]) = 7
- Upper Quartile ([tex]\(Q3\)[/tex]) = 61
The interquartile range (IQR) for Set 2 is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 \][/tex]
[tex]\[ \text{IQR} = 61 - 7 \][/tex]
[tex]\[ \text{IQR} = 54 \][/tex]
So, the interquartile range for Set 2 is [tex]\(54\)[/tex].
### Comparison:
- Set 1 interquartile range = [tex]\(23.5\)[/tex]
- Set 2 interquartile range = [tex]\(54\)[/tex]
Larger Spread Around the Median:
The interquartile range for Set 2 is larger, indicating that Set 2 has a greater spread of values around the median compared to Set 1. Therefore, Set 2 shows a larger spread near the median.
### Set 1:
- Lower Quartile ([tex]\(Q1\)[/tex]) = 30
- Upper Quartile ([tex]\(Q3\)[/tex]) = 53.5
The interquartile range (IQR) is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 \][/tex]
[tex]\[ \text{IQR} = 53.5 - 30 \][/tex]
[tex]\[ \text{IQR} = 23.5 \][/tex]
So, the interquartile range for Set 1 is [tex]\(23.5\)[/tex].
### Set 2:
- Lower Quartile ([tex]\(Q1\)[/tex]) = 7
- Upper Quartile ([tex]\(Q3\)[/tex]) = 61
The interquartile range (IQR) for Set 2 is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 \][/tex]
[tex]\[ \text{IQR} = 61 - 7 \][/tex]
[tex]\[ \text{IQR} = 54 \][/tex]
So, the interquartile range for Set 2 is [tex]\(54\)[/tex].
### Comparison:
- Set 1 interquartile range = [tex]\(23.5\)[/tex]
- Set 2 interquartile range = [tex]\(54\)[/tex]
Larger Spread Around the Median:
The interquartile range for Set 2 is larger, indicating that Set 2 has a greater spread of values around the median compared to Set 1. Therefore, Set 2 shows a larger spread near the median.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.