Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether being from California and preferring brand B are independent events, we need to check if the probability of being from California and preferring brand B equals the product of the individual probabilities of being from California and preferring brand B. Let us break it down step by step:
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
- The total number of people surveyed is 275.
- The number of people from California is 150.
- Therefore, [tex]\( P(\text{California}) = \frac{150}{275} \approx 0.545 \)[/tex].
2. Calculate [tex]\( P(\text{Brand B}) \)[/tex]:
- The total number of people who prefer Brand B is 99.
- Therefore, [tex]\( P(\text{Brand B}) = \frac{99}{275} \approx 0.36 \)[/tex].
3. Calculate [tex]\( P(\text{California and Brand B}) \)[/tex]:
- The number of people from California who prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California and Brand B}) = \frac{54}{275} \approx 0.196 \)[/tex].
4. Calculate [tex]\( P(\text{California} | \text{Brand B}) \)[/tex]:
- The number of people who prefer Brand B is 99.
- The number of those who are from California and prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California} | \text{Brand B}) = \frac{54}{99} \approx 0.545 \)[/tex].
5. Check for Independence:
- Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if [tex]\( P(A \text{ and } B) = P(A) \cdot P(B) \)[/tex].
- Calculate [tex]\( P(\text{California}) \times P(\text{Brand B}) \)[/tex]:
[tex]\[ P(\text{California}) \times P(\text{Brand B}) = 0.545 \times 0.36 \approx 0.196. \][/tex]
- Compare this with [tex]\( P(\text{California and Brand B}) \)[/tex]:
[tex]\[ P(\text{California and Brand B}) \approx 0.196. \][/tex]
- Since [tex]\( P(\text{California}) \times P(\text{Brand B}) \approx P(\text{California and Brand B}) \)[/tex], the events are independent.
Therefore, the correct option is:
A. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} | \text{Brand B}) \approx 0.55 \)[/tex].
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
- The total number of people surveyed is 275.
- The number of people from California is 150.
- Therefore, [tex]\( P(\text{California}) = \frac{150}{275} \approx 0.545 \)[/tex].
2. Calculate [tex]\( P(\text{Brand B}) \)[/tex]:
- The total number of people who prefer Brand B is 99.
- Therefore, [tex]\( P(\text{Brand B}) = \frac{99}{275} \approx 0.36 \)[/tex].
3. Calculate [tex]\( P(\text{California and Brand B}) \)[/tex]:
- The number of people from California who prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California and Brand B}) = \frac{54}{275} \approx 0.196 \)[/tex].
4. Calculate [tex]\( P(\text{California} | \text{Brand B}) \)[/tex]:
- The number of people who prefer Brand B is 99.
- The number of those who are from California and prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California} | \text{Brand B}) = \frac{54}{99} \approx 0.545 \)[/tex].
5. Check for Independence:
- Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if [tex]\( P(A \text{ and } B) = P(A) \cdot P(B) \)[/tex].
- Calculate [tex]\( P(\text{California}) \times P(\text{Brand B}) \)[/tex]:
[tex]\[ P(\text{California}) \times P(\text{Brand B}) = 0.545 \times 0.36 \approx 0.196. \][/tex]
- Compare this with [tex]\( P(\text{California and Brand B}) \)[/tex]:
[tex]\[ P(\text{California and Brand B}) \approx 0.196. \][/tex]
- Since [tex]\( P(\text{California}) \times P(\text{Brand B}) \approx P(\text{California and Brand B}) \)[/tex], the events are independent.
Therefore, the correct option is:
A. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} | \text{Brand B}) \approx 0.55 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.