Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To predict the price of a movie ticket in year 20 using the given regression equation [tex]\( y = 6.94 \cdot (1.02^x) \)[/tex], follow these steps:
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.