Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how much Jeff had in his account after 3 years, we will use the formula for compound interest, which is given by:
[tex]\[ A(t) = P \cdot (1 + i)^t \][/tex]
where:
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money)
- [tex]\( i \)[/tex] is the annual interest rate (expressed as a decimal)
- [tex]\( t \)[/tex] is the number of years the money is invested or borrowed for
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
Given values:
- Principal, [tex]\( P = 3000 \)[/tex]
- Annual interest rate, [tex]\( i = 6.5\% = 0.065 \)[/tex]
- Number of years, [tex]\( t = 3 \)[/tex]
Substituting these values into the formula, we get:
[tex]\[ A(3) = 3000 \cdot (1 + 0.065)^3 \][/tex]
First, calculate the term inside the parentheses:
[tex]\[ 1 + 0.065 = 1.065 \][/tex]
Now, raise this to the power of 3:
[tex]\[ 1.065^3 \approx 1.207728 \][/tex]
Multiply this result by the principal amount:
[tex]\[ 3000 \cdot 1.207728 \approx 3623.85 \][/tex]
Therefore, after 3 years, Jeff had approximately \[tex]$ 3623.85 in the account. The correct answer is: D. \$[/tex] 3623.85
[tex]\[ A(t) = P \cdot (1 + i)^t \][/tex]
where:
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money)
- [tex]\( i \)[/tex] is the annual interest rate (expressed as a decimal)
- [tex]\( t \)[/tex] is the number of years the money is invested or borrowed for
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
Given values:
- Principal, [tex]\( P = 3000 \)[/tex]
- Annual interest rate, [tex]\( i = 6.5\% = 0.065 \)[/tex]
- Number of years, [tex]\( t = 3 \)[/tex]
Substituting these values into the formula, we get:
[tex]\[ A(3) = 3000 \cdot (1 + 0.065)^3 \][/tex]
First, calculate the term inside the parentheses:
[tex]\[ 1 + 0.065 = 1.065 \][/tex]
Now, raise this to the power of 3:
[tex]\[ 1.065^3 \approx 1.207728 \][/tex]
Multiply this result by the principal amount:
[tex]\[ 3000 \cdot 1.207728 \approx 3623.85 \][/tex]
Therefore, after 3 years, Jeff had approximately \[tex]$ 3623.85 in the account. The correct answer is: D. \$[/tex] 3623.85
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.