Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the exponential regression equation that fits these data?

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
1 & 4 \\
\hline
2 & 8 \\
\hline
3 & 27 \\
\hline
4 & 85 \\
\hline
5 & 250 \\
\hline
6 & 600 \\
\hline
\end{array}
\][/tex]

A. [tex]\( y = 2.84 \left(1.22^x\right) \)[/tex]

B. [tex]\( y = 1.22 \left(2.84^x\right) \)[/tex]

C. [tex]\( y = 41.32 x^2 - 181.7 x + 171.6 \)[/tex]

D. [tex]\( y = 107.54 x - 214.06 \)[/tex]


Sagot :

To determine the exponential regression equation that fits the given data points:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 27 \\ \hline 4 & 85 \\ \hline 5 & 250 \\ \hline 6 & 600 \\ \hline \end{array} \][/tex]

we need to find an equation of the form [tex]\( y = a \cdot b^x \)[/tex].

Using the parameters [tex]\( a = 2.233965481826066 \)[/tex] and [tex]\( b = 2.542177114552428 \)[/tex], the regression equation is:

[tex]\[ y = 2.233965481826066 \cdot (2.542177114552428)^x \][/tex]

We need to compare this with the given options:

A. [tex]\( y = 2.84 \left(1.22^x\right) \)[/tex]
B. [tex]\( y = 1.22 \left(2.84^x\right) \)[/tex]
C. [tex]\( y = 41.32 x^2 - 181.7 x + 171.6 \)[/tex]
D. [tex]\( y = 107.54 x - 214.06 \)[/tex]

None of the provided options exactly match our regression equation. Therefore, based on our calculated parameters, none of the choices provided correctly represent the exponential regression equation that fits the given data.

To summarize:
- The correct exponential regression equation is [tex]\( y = 2.233965481826066 \cdot (2.542177114552428)^x \)[/tex].
- None of the given choices (A, B, C, or D) match this equation.