Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the function [tex]\( y = \ln(x-2) + 3 \)[/tex] step by step to determine its domain, range, intervals of increase and decrease, and any asymptotes.
### Domain:
The natural logarithm function [tex]\( \ln(z) \)[/tex] is defined only for [tex]\( z > 0 \)[/tex]. Here, [tex]\( z = x-2 \)[/tex], so we need:
[tex]\[ x - 2 > 0 \][/tex]
[tex]\[ x > 2 \][/tex]
Thus, the domain of the function is:
[tex]\[ (2, \infty) \][/tex]
### Range:
The natural logarithm function [tex]\( \ln(z) \)[/tex] can take any real value from [tex]\(-\infty\)[/tex] to [tex]\(+\infty\)[/tex]. Since the function [tex]\( y = \ln(x-2) + 3 \)[/tex] merely shifts the entire graph of [tex]\( \ln(x-2) \)[/tex] upwards by 3 units, the range of [tex]\( y \)[/tex] will also span all real numbers. Therefore, the range is:
[tex]\[ (-\infty, \infty) \][/tex]
### Intervals of Increase:
To determine where the function is increasing or decreasing, we consider the derivative. The derivative of [tex]\( y = \ln(x-2) + 3 \)[/tex] is given by:
[tex]\[ y' = \frac{d}{dx}[\ln(x-2) + 3] = \frac{1}{x-2} \][/tex]
Since [tex]\( \frac{1}{x-2} > 0 \)[/tex] for all [tex]\( x > 2 \)[/tex], the function is always increasing for [tex]\( x > 2 \)[/tex]. Hence, the interval of increase is:
[tex]\[ (2, \infty) \][/tex]
### Intervals of Decrease:
Given that the function [tex]\( y = \ln(x-2) + 3 \)[/tex] is always increasing for [tex]\( x > 2 \)[/tex], there are no intervals of decrease.
### Asymptote(s):
Vertical asymptotes occur where the function approaches [tex]\(\pm \infty\)[/tex] as [tex]\( x \)[/tex] approaches a particular value. For the function [tex]\( y = \ln(x-2) + 3 \)[/tex], as [tex]\( x \)[/tex] approaches 2 from the right ([tex]\( x \to 2^+ \)[/tex]), [tex]\( \ln(x-2) \)[/tex] approaches [tex]\(-\infty \)[/tex]. Thus, the function has a vertical asymptote at:
[tex]\[ x = 2 \][/tex]
To summarize:
- Domain: [tex]\( (2, \infty) \)[/tex]
- Range: [tex]\( (-\infty, \infty) \)[/tex]
- Intervals of Increase: [tex]\( (2, \infty) \)[/tex]
- Intervals of Decrease: None
- Asymptote(s): Vertical asymptote at [tex]\( x = 2 \)[/tex]
These summaries align with the analysis done above.
### Domain:
The natural logarithm function [tex]\( \ln(z) \)[/tex] is defined only for [tex]\( z > 0 \)[/tex]. Here, [tex]\( z = x-2 \)[/tex], so we need:
[tex]\[ x - 2 > 0 \][/tex]
[tex]\[ x > 2 \][/tex]
Thus, the domain of the function is:
[tex]\[ (2, \infty) \][/tex]
### Range:
The natural logarithm function [tex]\( \ln(z) \)[/tex] can take any real value from [tex]\(-\infty\)[/tex] to [tex]\(+\infty\)[/tex]. Since the function [tex]\( y = \ln(x-2) + 3 \)[/tex] merely shifts the entire graph of [tex]\( \ln(x-2) \)[/tex] upwards by 3 units, the range of [tex]\( y \)[/tex] will also span all real numbers. Therefore, the range is:
[tex]\[ (-\infty, \infty) \][/tex]
### Intervals of Increase:
To determine where the function is increasing or decreasing, we consider the derivative. The derivative of [tex]\( y = \ln(x-2) + 3 \)[/tex] is given by:
[tex]\[ y' = \frac{d}{dx}[\ln(x-2) + 3] = \frac{1}{x-2} \][/tex]
Since [tex]\( \frac{1}{x-2} > 0 \)[/tex] for all [tex]\( x > 2 \)[/tex], the function is always increasing for [tex]\( x > 2 \)[/tex]. Hence, the interval of increase is:
[tex]\[ (2, \infty) \][/tex]
### Intervals of Decrease:
Given that the function [tex]\( y = \ln(x-2) + 3 \)[/tex] is always increasing for [tex]\( x > 2 \)[/tex], there are no intervals of decrease.
### Asymptote(s):
Vertical asymptotes occur where the function approaches [tex]\(\pm \infty\)[/tex] as [tex]\( x \)[/tex] approaches a particular value. For the function [tex]\( y = \ln(x-2) + 3 \)[/tex], as [tex]\( x \)[/tex] approaches 2 from the right ([tex]\( x \to 2^+ \)[/tex]), [tex]\( \ln(x-2) \)[/tex] approaches [tex]\(-\infty \)[/tex]. Thus, the function has a vertical asymptote at:
[tex]\[ x = 2 \][/tex]
To summarize:
- Domain: [tex]\( (2, \infty) \)[/tex]
- Range: [tex]\( (-\infty, \infty) \)[/tex]
- Intervals of Increase: [tex]\( (2, \infty) \)[/tex]
- Intervals of Decrease: None
- Asymptote(s): Vertical asymptote at [tex]\( x = 2 \)[/tex]
These summaries align with the analysis done above.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.