Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the average rate of change of the function [tex]\( f(x) = 2x^2 - x - 1 \)[/tex] on the interval [tex]\([0, 4]\)[/tex], follow these steps:
1. Evaluate the function at the endpoints of the interval:
- For [tex]\( x = 4 \)[/tex],
[tex]\[ f(4) = 2(4)^2 - 4 - 1 = 2 \cdot 16 - 4 - 1 = 32 - 4 - 1 = 27 \][/tex]
- For [tex]\( x = 0 \)[/tex],
[tex]\[ f(0) = 2(0)^2 - 0 - 1 = 0 - 0 - 1 = -1 \][/tex]
2. Calculate the difference in the function values:
[tex]\[ f(4) - f(0) = 27 - (-1) = 27 + 1 = 28 \][/tex]
3. Calculate the difference in the [tex]\( x \)[/tex]-values:
[tex]\[ 4 - 0 = 4 \][/tex]
4. Compute the average rate of change using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(b) - f(a)}{b - a} = \frac{28}{4} = 7 \][/tex]
Thus, the average rate of change of the function [tex]\( f(x) = 2x^2 - x - 1 \)[/tex] on the interval [tex]\([0, 4]\)[/tex] is [tex]\( 7 \)[/tex].
1. Evaluate the function at the endpoints of the interval:
- For [tex]\( x = 4 \)[/tex],
[tex]\[ f(4) = 2(4)^2 - 4 - 1 = 2 \cdot 16 - 4 - 1 = 32 - 4 - 1 = 27 \][/tex]
- For [tex]\( x = 0 \)[/tex],
[tex]\[ f(0) = 2(0)^2 - 0 - 1 = 0 - 0 - 1 = -1 \][/tex]
2. Calculate the difference in the function values:
[tex]\[ f(4) - f(0) = 27 - (-1) = 27 + 1 = 28 \][/tex]
3. Calculate the difference in the [tex]\( x \)[/tex]-values:
[tex]\[ 4 - 0 = 4 \][/tex]
4. Compute the average rate of change using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(b) - f(a)}{b - a} = \frac{28}{4} = 7 \][/tex]
Thus, the average rate of change of the function [tex]\( f(x) = 2x^2 - x - 1 \)[/tex] on the interval [tex]\([0, 4]\)[/tex] is [tex]\( 7 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.