At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which side of a triangle has the greatest length, we look at the measures of the angles of the triangle. In any triangle, the side opposite the largest angle is the longest side.
Given:
- [tex]\(\angle A = 55^\circ\)[/tex]
- [tex]\(\angle B = 65^\circ\)[/tex]
- [tex]\(\angle C = 60^\circ\)[/tex]
First, compare the angles:
- [tex]\(\angle B = 65^\circ\)[/tex] (largest angle)
- [tex]\(\angle C = 60^\circ\)[/tex]
- [tex]\(\angle A = 55^\circ\)[/tex]
Since [tex]\(\angle B\)[/tex] is the largest angle in the triangle, the side opposite [tex]\(\angle B\)[/tex] will be the longest side.
In triangle [tex]\(ABC\)[/tex]:
- The side opposite [tex]\(\angle A\)[/tex] is [tex]\(\overline{BC}\)[/tex].
- The side opposite [tex]\(\angle B\)[/tex] is [tex]\(\overline{AC}\)[/tex].
- The side opposite [tex]\(\angle C\)[/tex] is [tex]\(\overline{AB}\)[/tex].
Therefore, the side opposite to [tex]\(\angle B\)[/tex] is [tex]\(\overline{AC}\)[/tex].
Hence, the correct answer is:
A. [tex]\(\overline{BC}\)[/tex]
Given:
- [tex]\(\angle A = 55^\circ\)[/tex]
- [tex]\(\angle B = 65^\circ\)[/tex]
- [tex]\(\angle C = 60^\circ\)[/tex]
First, compare the angles:
- [tex]\(\angle B = 65^\circ\)[/tex] (largest angle)
- [tex]\(\angle C = 60^\circ\)[/tex]
- [tex]\(\angle A = 55^\circ\)[/tex]
Since [tex]\(\angle B\)[/tex] is the largest angle in the triangle, the side opposite [tex]\(\angle B\)[/tex] will be the longest side.
In triangle [tex]\(ABC\)[/tex]:
- The side opposite [tex]\(\angle A\)[/tex] is [tex]\(\overline{BC}\)[/tex].
- The side opposite [tex]\(\angle B\)[/tex] is [tex]\(\overline{AC}\)[/tex].
- The side opposite [tex]\(\angle C\)[/tex] is [tex]\(\overline{AB}\)[/tex].
Therefore, the side opposite to [tex]\(\angle B\)[/tex] is [tex]\(\overline{AC}\)[/tex].
Hence, the correct answer is:
A. [tex]\(\overline{BC}\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.