Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's work through the steps of proving the law of cosines for [tex]\(\triangle ABC\)[/tex]:
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.