Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the given chemical reaction and the associated enthalpy change:
The reaction provided is:
[tex]\[ 2 \text{NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{H}_2(g) \][/tex]
The change in enthalpy ([tex]\(\Delta H\)[/tex]) for this reaction is given as [tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex].
### Step-by-Step Solution
1. Understanding Enthalpy Change ([tex]\(\Delta H\)[/tex]):
- [tex]\(\Delta H\)[/tex] represents the change in enthalpy or heat content of the reaction. It tells us whether the reaction absorbs or releases heat.
- A positive [tex]\(\Delta H\)[/tex] value ([tex]\(\Delta H > 0\)[/tex]) indicates that the reaction absorbs heat from its surroundings.
2. Classifying the Reaction Based on [tex]\(\Delta H\)[/tex]:
- If the reaction absorbs heat ([tex]\(\Delta H > 0\)[/tex]), it is endothermic.
- If the reaction releases heat ([tex]\(\Delta H < 0\)[/tex]), it is exothermic.
3. Analyzing the Given Reaction:
- The given enthalpy change is [tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex], which is a positive value.
- Since [tex]\(\Delta H\)[/tex] is positive, this means that the reaction consumes heat from its surroundings.
4. Conclusion:
- Because the reaction has a positive enthalpy change ([tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex]), it is an endothermic reaction.
Thus, the correct answer is:
A. The reaction is endothermic.
The reaction provided is:
[tex]\[ 2 \text{NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{H}_2(g) \][/tex]
The change in enthalpy ([tex]\(\Delta H\)[/tex]) for this reaction is given as [tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex].
### Step-by-Step Solution
1. Understanding Enthalpy Change ([tex]\(\Delta H\)[/tex]):
- [tex]\(\Delta H\)[/tex] represents the change in enthalpy or heat content of the reaction. It tells us whether the reaction absorbs or releases heat.
- A positive [tex]\(\Delta H\)[/tex] value ([tex]\(\Delta H > 0\)[/tex]) indicates that the reaction absorbs heat from its surroundings.
2. Classifying the Reaction Based on [tex]\(\Delta H\)[/tex]:
- If the reaction absorbs heat ([tex]\(\Delta H > 0\)[/tex]), it is endothermic.
- If the reaction releases heat ([tex]\(\Delta H < 0\)[/tex]), it is exothermic.
3. Analyzing the Given Reaction:
- The given enthalpy change is [tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex], which is a positive value.
- Since [tex]\(\Delta H\)[/tex] is positive, this means that the reaction consumes heat from its surroundings.
4. Conclusion:
- Because the reaction has a positive enthalpy change ([tex]\( \Delta H = 92.4 \, \text{kJ/mol} \)[/tex]), it is an endothermic reaction.
Thus, the correct answer is:
A. The reaction is endothermic.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.