At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's examine each given expression to determine which ones are linear equations.
### Expression (a): [tex]\( x^2 + x = 2 \)[/tex]
To determine whether this equation is linear, we need to look at the highest power of the variable [tex]\( x \)[/tex].
- The term [tex]\( x^2 \)[/tex] has a degree of 2.
- The term [tex]\( x \)[/tex] has a degree of 1.
Since the highest degree of [tex]\( x \)[/tex] in this expression is 2, this equation is not linear. Linear equations must have variables raised only to the first power.
### Expression (b): [tex]\( 3x + 5 = 11 \)[/tex]
Next, we examine this equation:
- The term [tex]\( 3x \)[/tex] has a degree of 1.
- The term [tex]\( 5 \)[/tex] is a constant (it has [tex]\( x^0 \)[/tex], which is considered of degree 0).
Since the highest degree of [tex]\( x \)[/tex] in this expression is 1, this equation is linear. Linear equations are of the form [tex]\( ax + b = c \)[/tex], where the variable [tex]\( x \)[/tex] is raised to the power of 1.
### Expression (c): [tex]\( 5 + 7 = 12 \)[/tex]
Lastly, we evaluate this expression:
- The terms [tex]\( 5 \)[/tex] and [tex]\( 7 \)[/tex] are constants and do not contain the variable [tex]\( x \)[/tex].
This expression does not have a variable term at all, meaning it is essentially a statement about constants. Therefore, it can be considered as a linear equation in a trivial way with the variable [tex]\( x \)[/tex] absent (degree [tex]\( x^0 \)[/tex]).
Since identifying linear equations typically requires the presence of a variable raised to the first power, and considering that [tex]\( 5 + 7 = 12 \)[/tex] is simply an arithmetic statement, this doesn't fit the standard form of a linear equation involving a variable.
### Conclusion
The linear equation from the given expressions is:
- (b) [tex]\( 3x + 5 = 11 \)[/tex]
Therefore, the indices of the linear equations are:
- (b)
Thus, the linear equation identified is: (b) [tex]\( 3x + 5 = 11 \)[/tex].
### Expression (a): [tex]\( x^2 + x = 2 \)[/tex]
To determine whether this equation is linear, we need to look at the highest power of the variable [tex]\( x \)[/tex].
- The term [tex]\( x^2 \)[/tex] has a degree of 2.
- The term [tex]\( x \)[/tex] has a degree of 1.
Since the highest degree of [tex]\( x \)[/tex] in this expression is 2, this equation is not linear. Linear equations must have variables raised only to the first power.
### Expression (b): [tex]\( 3x + 5 = 11 \)[/tex]
Next, we examine this equation:
- The term [tex]\( 3x \)[/tex] has a degree of 1.
- The term [tex]\( 5 \)[/tex] is a constant (it has [tex]\( x^0 \)[/tex], which is considered of degree 0).
Since the highest degree of [tex]\( x \)[/tex] in this expression is 1, this equation is linear. Linear equations are of the form [tex]\( ax + b = c \)[/tex], where the variable [tex]\( x \)[/tex] is raised to the power of 1.
### Expression (c): [tex]\( 5 + 7 = 12 \)[/tex]
Lastly, we evaluate this expression:
- The terms [tex]\( 5 \)[/tex] and [tex]\( 7 \)[/tex] are constants and do not contain the variable [tex]\( x \)[/tex].
This expression does not have a variable term at all, meaning it is essentially a statement about constants. Therefore, it can be considered as a linear equation in a trivial way with the variable [tex]\( x \)[/tex] absent (degree [tex]\( x^0 \)[/tex]).
Since identifying linear equations typically requires the presence of a variable raised to the first power, and considering that [tex]\( 5 + 7 = 12 \)[/tex] is simply an arithmetic statement, this doesn't fit the standard form of a linear equation involving a variable.
### Conclusion
The linear equation from the given expressions is:
- (b) [tex]\( 3x + 5 = 11 \)[/tex]
Therefore, the indices of the linear equations are:
- (b)
Thus, the linear equation identified is: (b) [tex]\( 3x + 5 = 11 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.