Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the correct statement among the given choices, we'll first determine the slope and the length of the line segment [tex]\(\overline{WX}\)[/tex], and then we'll understand how the dilation affects these quantities.
### Step 1: Compute the Slope of [tex]\(\overline{WX}\)[/tex]
To find the slope of the line segment [tex]\(\overline{WX}\)[/tex] which connects points [tex]\( W(3, 2) \)[/tex] and [tex]\( X(7, 5) \)[/tex], we use the slope formula:
[tex]\[ \text{slope of } \overline{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in our coordinates [tex]\(W(3, 2)\)[/tex] (i.e., [tex]\( x_1 = 3 \)[/tex] and [tex]\( y_1 = 2 \)[/tex]) and [tex]\(X(7, 5)\)[/tex] (i.e., [tex]\( x_2 = 7 \)[/tex] and [tex]\( y_2 = 5 \)[/tex]), we get:
[tex]\[ \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
### Step 2: Compute the Length of [tex]\(\overline{WX}\)[/tex]
To find the length of the segment [tex]\(\overline{WX}\)[/tex], we use the distance formula:
[tex]\[ \text{length of } \overline{WX} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates [tex]\(W(3, 2)\)[/tex] and [tex]\(X(7, 5)\)[/tex], we get:
[tex]\[ \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Step 3: Determine the Length After Dilation
Since the polygon is dilated by a scale factor of 3 with [tex]\( W(3, 2) \)[/tex] as the center of dilation, the length of [tex]\(\overline{WX}\)[/tex] after dilation will be:
[tex]\[ 5 \times 3 = 15 \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the original length of [tex]\(\overline{WX}\)[/tex] is 5. After dilation, the length is 15.
### Conclusion
The correct statement is:
C. The slope of [tex]\(\overline{W X}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W X}\)[/tex] is 5.
### Step 1: Compute the Slope of [tex]\(\overline{WX}\)[/tex]
To find the slope of the line segment [tex]\(\overline{WX}\)[/tex] which connects points [tex]\( W(3, 2) \)[/tex] and [tex]\( X(7, 5) \)[/tex], we use the slope formula:
[tex]\[ \text{slope of } \overline{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in our coordinates [tex]\(W(3, 2)\)[/tex] (i.e., [tex]\( x_1 = 3 \)[/tex] and [tex]\( y_1 = 2 \)[/tex]) and [tex]\(X(7, 5)\)[/tex] (i.e., [tex]\( x_2 = 7 \)[/tex] and [tex]\( y_2 = 5 \)[/tex]), we get:
[tex]\[ \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
### Step 2: Compute the Length of [tex]\(\overline{WX}\)[/tex]
To find the length of the segment [tex]\(\overline{WX}\)[/tex], we use the distance formula:
[tex]\[ \text{length of } \overline{WX} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates [tex]\(W(3, 2)\)[/tex] and [tex]\(X(7, 5)\)[/tex], we get:
[tex]\[ \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Step 3: Determine the Length After Dilation
Since the polygon is dilated by a scale factor of 3 with [tex]\( W(3, 2) \)[/tex] as the center of dilation, the length of [tex]\(\overline{WX}\)[/tex] after dilation will be:
[tex]\[ 5 \times 3 = 15 \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the original length of [tex]\(\overline{WX}\)[/tex] is 5. After dilation, the length is 15.
### Conclusion
The correct statement is:
C. The slope of [tex]\(\overline{W X}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W X}\)[/tex] is 5.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.