Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factor the quadratic expression [tex]\(2x^2 - 14x + 24\)[/tex], we need to find its roots and then write the expression in its factored form.
1. Identify Coefficients:
The quadratic expression is in the form [tex]\(ax^2 + bx + c\)[/tex], where:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = -14\)[/tex]
- [tex]\(c = 24\)[/tex]
2. Calculate the Discriminant:
The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
[tex]\[ \Delta = (-14)^2 - 4(2)(24) = 196 - 192 = 4 \][/tex]
3. Find the Roots:
The roots of the quadratic equation can be found using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{\Delta}}{2a}\)[/tex].
[tex]\[ x = \frac{14 \pm \sqrt{4}}{4} = \frac{14 \pm 2}{4} \][/tex]
This gives us two roots:
[tex]\[ x_1 = \frac{14 + 2}{4} = \frac{16}{4} = 4 \][/tex]
[tex]\[ x_2 = \frac{14 - 2}{4} = \frac{12}{4} = 3 \][/tex]
4. Write the Factored Form:
With the roots [tex]\(x_1 = 4\)[/tex] and [tex]\(x_2 = 3\)[/tex], the quadratic expression can be factored as:
[tex]\[ 2(x - 4)(x - 3) \][/tex]
So, the factored form of the expression [tex]\(2x^2 - 14x + 24\)[/tex] is [tex]\(2(x - 4)(x - 3)\)[/tex], which corresponds to option:
C. [tex]\(2(x - 3)(x - 4)\)[/tex]
(Note that since multiplication is commutative, both [tex]\(2(x-4)(x-3)\)[/tex] and [tex]\(2(x-3)(x-4)\)[/tex] are correct and equivalent.)
1. Identify Coefficients:
The quadratic expression is in the form [tex]\(ax^2 + bx + c\)[/tex], where:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = -14\)[/tex]
- [tex]\(c = 24\)[/tex]
2. Calculate the Discriminant:
The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
[tex]\[ \Delta = (-14)^2 - 4(2)(24) = 196 - 192 = 4 \][/tex]
3. Find the Roots:
The roots of the quadratic equation can be found using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{\Delta}}{2a}\)[/tex].
[tex]\[ x = \frac{14 \pm \sqrt{4}}{4} = \frac{14 \pm 2}{4} \][/tex]
This gives us two roots:
[tex]\[ x_1 = \frac{14 + 2}{4} = \frac{16}{4} = 4 \][/tex]
[tex]\[ x_2 = \frac{14 - 2}{4} = \frac{12}{4} = 3 \][/tex]
4. Write the Factored Form:
With the roots [tex]\(x_1 = 4\)[/tex] and [tex]\(x_2 = 3\)[/tex], the quadratic expression can be factored as:
[tex]\[ 2(x - 4)(x - 3) \][/tex]
So, the factored form of the expression [tex]\(2x^2 - 14x + 24\)[/tex] is [tex]\(2(x - 4)(x - 3)\)[/tex], which corresponds to option:
C. [tex]\(2(x - 3)(x - 4)\)[/tex]
(Note that since multiplication is commutative, both [tex]\(2(x-4)(x-3)\)[/tex] and [tex]\(2(x-3)(x-4)\)[/tex] are correct and equivalent.)
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.