Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given expressions is a perfect cube, we need to check whether the coefficients and the powers of the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are all perfect cubes.
A perfect cube for a number [tex]\( n \)[/tex] is a number that can be expressed as [tex]\( n = k^3 \)[/tex] where [tex]\( k \)[/tex] is an integer. Similarly, for an expression [tex]\( x^a y^b \)[/tex], it is a perfect cube if both [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are divisible by 3.
Let's analyze each expression step-by-step:
1. Expression: [tex]\(-8 x^{21} y^8\)[/tex]
- Coefficient: [tex]\(-8\)[/tex]
- [tex]\( -8 = (-2)^3 \)[/tex] (Yes, [tex]\(-8\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 21 \)[/tex]
- [tex]\( 21 \div 3 = 7 \)[/tex] (Yes, 21 is divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Therefore, [tex]\(-8 x^{21} y^8\)[/tex] is not a perfect cube.
2. Expression: [tex]\(-64 x^{64} y^{64}\)[/tex]
- Coefficient: [tex]\(-64\)[/tex]
- [tex]\( -64 = (-4)^3 \)[/tex] (No, [tex]\(-64 = (-4)^3\)[/tex] is not correct as [tex]\((-4)^3 = -64\)[/tex])
- Therefore, [tex]\(-64 x^{64} y^{64}\)[/tex] is not a perfect cube.
3. Expression: [tex]\(-125 x^8 y^{20}\)[/tex]
- Coefficient: [tex]\(-125\)[/tex]
- [tex]\( -125 = (-5)^3 \)[/tex] (Yes, [tex]\(-125\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 20 \)[/tex]
- [tex]\( 20 \div 3 \approx 6.67 \)[/tex] (No, 20 is not divisible by 3)
- Therefore, [tex]\(-125 x^8 y^{20}\)[/tex] is not a perfect cube.
4. Expression: [tex]\(-216 x^8 y^{18}\)[/tex]
- Coefficient: [tex]\(-216\)[/tex]
- [tex]\(-216 = (-6)^3 \)[/tex] (Yes, [tex]\(-216\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 18 \)[/tex]
- [tex]\( 18 \div 3 = 6 \)[/tex] (Yes, 18 is divisible by 3)
- Therefore, [tex]\(-216 x^8 y^{18}\)[/tex] is not a perfect cube.
After checking each expression:
- [tex]\(-8 x^{21} y^8\)[/tex] is not a perfect cube because [tex]\( y^8 \)[/tex] is not a perfect cube.
- [tex]\(-64 x^{64} y^{64}\)[/tex] is not a perfect cube because [tex]\(-64\)[/tex] is a perfect cube but the coefficient and its cubes do not justify to check the powers.
- [tex]\(-125 x^8 y^{20}\)[/tex] is not a perfect cube because neither [tex]\(x^8\)[/tex] nor [tex]\(y^{20}\)[/tex] are divisible by 3.
- [tex]\(-216 x^8 y^{18}\)[/tex] is not a perfect cube because [tex]\(x^8\)[/tex] is not divisible by 3.
None of the given expressions are perfect cubes.
A perfect cube for a number [tex]\( n \)[/tex] is a number that can be expressed as [tex]\( n = k^3 \)[/tex] where [tex]\( k \)[/tex] is an integer. Similarly, for an expression [tex]\( x^a y^b \)[/tex], it is a perfect cube if both [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are divisible by 3.
Let's analyze each expression step-by-step:
1. Expression: [tex]\(-8 x^{21} y^8\)[/tex]
- Coefficient: [tex]\(-8\)[/tex]
- [tex]\( -8 = (-2)^3 \)[/tex] (Yes, [tex]\(-8\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 21 \)[/tex]
- [tex]\( 21 \div 3 = 7 \)[/tex] (Yes, 21 is divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Therefore, [tex]\(-8 x^{21} y^8\)[/tex] is not a perfect cube.
2. Expression: [tex]\(-64 x^{64} y^{64}\)[/tex]
- Coefficient: [tex]\(-64\)[/tex]
- [tex]\( -64 = (-4)^3 \)[/tex] (No, [tex]\(-64 = (-4)^3\)[/tex] is not correct as [tex]\((-4)^3 = -64\)[/tex])
- Therefore, [tex]\(-64 x^{64} y^{64}\)[/tex] is not a perfect cube.
3. Expression: [tex]\(-125 x^8 y^{20}\)[/tex]
- Coefficient: [tex]\(-125\)[/tex]
- [tex]\( -125 = (-5)^3 \)[/tex] (Yes, [tex]\(-125\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 20 \)[/tex]
- [tex]\( 20 \div 3 \approx 6.67 \)[/tex] (No, 20 is not divisible by 3)
- Therefore, [tex]\(-125 x^8 y^{20}\)[/tex] is not a perfect cube.
4. Expression: [tex]\(-216 x^8 y^{18}\)[/tex]
- Coefficient: [tex]\(-216\)[/tex]
- [tex]\(-216 = (-6)^3 \)[/tex] (Yes, [tex]\(-216\)[/tex] is a perfect cube)
- Power of [tex]\( x \)[/tex]: [tex]\( 8 \)[/tex]
- [tex]\( 8 \div 3 \approx 2.67 \)[/tex] (No, 8 is not divisible by 3)
- Power of [tex]\( y \)[/tex]: [tex]\( 18 \)[/tex]
- [tex]\( 18 \div 3 = 6 \)[/tex] (Yes, 18 is divisible by 3)
- Therefore, [tex]\(-216 x^8 y^{18}\)[/tex] is not a perfect cube.
After checking each expression:
- [tex]\(-8 x^{21} y^8\)[/tex] is not a perfect cube because [tex]\( y^8 \)[/tex] is not a perfect cube.
- [tex]\(-64 x^{64} y^{64}\)[/tex] is not a perfect cube because [tex]\(-64\)[/tex] is a perfect cube but the coefficient and its cubes do not justify to check the powers.
- [tex]\(-125 x^8 y^{20}\)[/tex] is not a perfect cube because neither [tex]\(x^8\)[/tex] nor [tex]\(y^{20}\)[/tex] are divisible by 3.
- [tex]\(-216 x^8 y^{18}\)[/tex] is not a perfect cube because [tex]\(x^8\)[/tex] is not divisible by 3.
None of the given expressions are perfect cubes.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.