Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To write the equation of a circle in standard form, we need to identify the center and radius of the circle.
Given:
- The center of the circle is (10, 7).
- The circumference is 14π.
First, we use the given circumference to find the radius of the circle. The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle. Given that [tex]\( C = 14 \pi \)[/tex], we can solve for [tex]\( r \)[/tex] as follows:
[tex]\[ 14 \pi = 2 \pi r \][/tex]
Divide both sides by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{14 \pi}{2 \pi} = 7 \][/tex]
Now that we have the radius of the circle as 7, the equation of a circle in standard form is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\( r \)[/tex] is the radius. Plugging in the center [tex]\((10, 7)\)[/tex] and the radius [tex]\(7\)[/tex], we get:
[tex]\[ (x - 10)^2 + (y - 7)^2 = 7^2 \][/tex]
Calculate [tex]\( 7^2 \)[/tex]:
[tex]\[ 7^2 = 49 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 10)^2 + (y - 7)^2 = 49 \][/tex]
Given:
- The center of the circle is (10, 7).
- The circumference is 14π.
First, we use the given circumference to find the radius of the circle. The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle. Given that [tex]\( C = 14 \pi \)[/tex], we can solve for [tex]\( r \)[/tex] as follows:
[tex]\[ 14 \pi = 2 \pi r \][/tex]
Divide both sides by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{14 \pi}{2 \pi} = 7 \][/tex]
Now that we have the radius of the circle as 7, the equation of a circle in standard form is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\( r \)[/tex] is the radius. Plugging in the center [tex]\((10, 7)\)[/tex] and the radius [tex]\(7\)[/tex], we get:
[tex]\[ (x - 10)^2 + (y - 7)^2 = 7^2 \][/tex]
Calculate [tex]\( 7^2 \)[/tex]:
[tex]\[ 7^2 = 49 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 10)^2 + (y - 7)^2 = 49 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.