Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Credit card A has an APR of 15.8% and an annual fee of [tex]$72, while credit card B has an APR of 19.6% and no annual fee. All else being equal, which of these equations can be used to solve for the principal P for which the cards offer the same deal over the course of a year? (Assume all interest is compounded monthly.)

A. \(P\left(1+\frac{0.158}{12}\right)^{12}+\$[/tex] 72=P\left(1+\frac{0.196}{12}\right)^{12}\)

B. [tex]\(P\left(1+\frac{0.158}{12}\right)^{12}+\frac{\$ 72}{12}=P\left(1+\frac{0.196}{12}\right)^{12}\)[/tex]

C. [tex]\(P\left(1+\frac{0.158}{12}\right)^{12}-\frac{\$ 72}{12}=P\left(1+\frac{0.196}{12}\right)^{12}\)[/tex]

D. [tex]\(P\left(1+\frac{0.158}{12}\right)^{12}-\$ 72=P\left(1+\frac{0.196}{12}\right)^{12}\)[/tex]


Sagot :

To determine which credit card offers the same deal over the course of a year, we need to set up equations that account for the interest and fees for each card and then find the value of the principal [tex]\( P \)[/tex] where they are equal.

Credit card A has an APR of [tex]\( 15.8\% \)[/tex] and an annual fee of [tex]\( \$ 72 \)[/tex]. Since the interest is compounded monthly, we convert the APR to a monthly interest rate by dividing by 12. The monthly interest rate for card A is:

[tex]\[ \frac{15.8\%}{12} = \frac{0.158}{12} \][/tex]

Using compound interest formula, the amount owed after one year, including the annual fee, is:

[tex]\[ P \left(1 + \frac{0.158}{12}\right)^{12} + \$ 72 \][/tex]

Credit card B has an APR of [tex]\( 19.6\% \)[/tex] and no annual fee. The monthly interest rate for card B is:

[tex]\[ \frac{19.6\%}{12} = \frac{0.196}{12} \][/tex]

Using compound interest formula, the amount owed after one year is:

[tex]\[ P \left(1 + \frac{0.196}{12}\right)^{12} \][/tex]

To find the principal [tex]\( P \)[/tex] for which the total annual costs including interest are the same for both credit cards, we equate the two expressions:

[tex]\[ P \left(1 + \frac{0.158}{12}\right)^{12} + \$ 72 = P \left(1 + \frac{0.196}{12}\right)^{12} \][/tex]

Thus, the correct equation is:

A.
[tex]\[ P\left(1 + \frac{0.158}{12}\right)^{12} + \$ 72 = P\left(1 + \frac{0.196}{12}\right)^{12} \][/tex]

So, the answer is:

1

This equation matches with option A, which is derived in a straightforward manner considering both the compounding of interest and the additional annual fee of card A.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.