Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the equation [tex]\(\sqrt{x + 10} - 1 = x\)[/tex] step-by-step.
1. Isolate the square root term:
Start by adding 1 to both sides of the equation:
[tex]\[ \sqrt{x + 10} = x + 1 \][/tex]
2. Square both sides:
To eliminate the square root, square both sides of the equation:
[tex]\[ (\sqrt{x + 10})^2 = (x + 1)^2 \][/tex]
This simplifies to:
[tex]\[ x + 10 = (x + 1)^2 \][/tex]
3. Expand the right side:
Expand [tex]\((x + 1)^2\)[/tex]:
[tex]\[ x + 10 = x^2 + 2x + 1 \][/tex]
4. Rearrange the equation:
Finally, move all terms to one side to form a standard quadratic equation:
[tex]\[ x + 10 = x^2 + 2x + 1 \][/tex]
Subtract [tex]\(x + 10\)[/tex] from both sides:
[tex]\[ 0 = x^2 + x - 9 \][/tex]
Therefore, the equation [tex]\(\sqrt{x + 10} - 1 = x\)[/tex] simplifies to [tex]\(x + 10 = x^2 + 2x + 1\)[/tex].
Thus, the second equation, [tex]\(x+10 = x^2 + 2x + 1\)[/tex], is the one that matches the transformed form of [tex]\(\sqrt{x + 10} - 1 = x\)[/tex].
1. Isolate the square root term:
Start by adding 1 to both sides of the equation:
[tex]\[ \sqrt{x + 10} = x + 1 \][/tex]
2. Square both sides:
To eliminate the square root, square both sides of the equation:
[tex]\[ (\sqrt{x + 10})^2 = (x + 1)^2 \][/tex]
This simplifies to:
[tex]\[ x + 10 = (x + 1)^2 \][/tex]
3. Expand the right side:
Expand [tex]\((x + 1)^2\)[/tex]:
[tex]\[ x + 10 = x^2 + 2x + 1 \][/tex]
4. Rearrange the equation:
Finally, move all terms to one side to form a standard quadratic equation:
[tex]\[ x + 10 = x^2 + 2x + 1 \][/tex]
Subtract [tex]\(x + 10\)[/tex] from both sides:
[tex]\[ 0 = x^2 + x - 9 \][/tex]
Therefore, the equation [tex]\(\sqrt{x + 10} - 1 = x\)[/tex] simplifies to [tex]\(x + 10 = x^2 + 2x + 1\)[/tex].
Thus, the second equation, [tex]\(x+10 = x^2 + 2x + 1\)[/tex], is the one that matches the transformed form of [tex]\(\sqrt{x + 10} - 1 = x\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.