Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The statistical definition of entropy in thermodynamics is given by the formula:
[tex]\[ S = k_B \cdot \ln(W) \][/tex]
where:
- [tex]\( S \)[/tex] is the entropy,
- [tex]\( k_B \)[/tex] is the Boltzmann constant ([tex]\( 1.38 \times 10^{-23} \)[/tex] joules per kelvin),
- [tex]\( W \)[/tex] is the number of possible microstates of the system.
Given:
- [tex]\( W = 4 \)[/tex]
Step-by-step solution:
1. Identify the constants and values given:
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] joules per kelvin.
- Number of microstates, [tex]\( W = 4 \)[/tex].
2. Calculate the natural logarithm of the number of microstates:
- [tex]\( \ln(4) \)[/tex].
3. Multiply the Boltzmann constant by the natural logarithm of the number of microstates:
- [tex]\( S = 1.38 \times 10^{-23} \cdot \ln(4) \)[/tex].
Performing this calculation, we get:
[tex]\[ S \approx 1.91 \times 10^{-23} \text{ joules per kelvin} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.91 \times 10^{-23} \)[/tex] joules/kelvin
[tex]\[ S = k_B \cdot \ln(W) \][/tex]
where:
- [tex]\( S \)[/tex] is the entropy,
- [tex]\( k_B \)[/tex] is the Boltzmann constant ([tex]\( 1.38 \times 10^{-23} \)[/tex] joules per kelvin),
- [tex]\( W \)[/tex] is the number of possible microstates of the system.
Given:
- [tex]\( W = 4 \)[/tex]
Step-by-step solution:
1. Identify the constants and values given:
- Boltzmann constant, [tex]\( k_B = 1.38 \times 10^{-23} \)[/tex] joules per kelvin.
- Number of microstates, [tex]\( W = 4 \)[/tex].
2. Calculate the natural logarithm of the number of microstates:
- [tex]\( \ln(4) \)[/tex].
3. Multiply the Boltzmann constant by the natural logarithm of the number of microstates:
- [tex]\( S = 1.38 \times 10^{-23} \cdot \ln(4) \)[/tex].
Performing this calculation, we get:
[tex]\[ S \approx 1.91 \times 10^{-23} \text{ joules per kelvin} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.91 \times 10^{-23} \)[/tex] joules/kelvin
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.