Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the ordered pair closest to a local minimum from the table of values, follow these steps:
1. Understand the Concept of Local Minimum:
A local minimum of a function [tex]\( f(x) \)[/tex] occurs at a point [tex]\( x \)[/tex] where the function value [tex]\( f(x) \)[/tex] is lower than that of its immediate neighbors.
2. Identify and Examine Each Point:
Let’s look at each point and compare it to its neighbors.
- Point (-2, -8): It doesn't have a left neighbor to compare, so it's not considered.
- Point (-1, -3):
[tex]\[ \text{Left neighbor} = (-2, -8), \quad \text{Right neighbor} = (0, -2) \][/tex]
[tex]\( -3 \)[/tex] is greater than [tex]\( -8 \)[/tex] and less than [tex]\( -2 \)[/tex], so it is not a local minimum.
- Point (0, -2):
[tex]\[ \text{Left neighbor} = (-1, -3), \quad \text{Right neighbor} = (1, 4) \][/tex]
[tex]\( -2 \)[/tex] is greater than [tex]\( -3 \)[/tex] and less than [tex]\( 4 \)[/tex], so it is not a local minimum.
- Point (1, 4):
[tex]\[ \text{Left neighbor} = (0, -2), \quad \text{Right neighbor} = (2, 1) \][/tex]
[tex]\( 4 \)[/tex] is greater than [tex]\( -2 \)[/tex] and greater than [tex]\( 1 \)[/tex], so it is not a local minimum.
- Point (2, 1):
[tex]\[ \text{Left neighbor} = (1, 4), \quad \text{Right neighbor} = (3, 3) \][/tex]
[tex]\( 1 \)[/tex] is less than [tex]\( 4 \)[/tex] and less than [tex]\( 3 \)[/tex], so it is a local minimum.
- Point (3, 3): It doesn't have a right neighbor to compare, so it's not considered.
3. Determine the Local Minimum:
Based on the above analysis, the point (2, 1) satisfies the condition of a local minimum because its value is less than the values of its immediate neighbors.
Therefore, the ordered pair closest to a local minimum of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ (2, 1) \][/tex]
1. Understand the Concept of Local Minimum:
A local minimum of a function [tex]\( f(x) \)[/tex] occurs at a point [tex]\( x \)[/tex] where the function value [tex]\( f(x) \)[/tex] is lower than that of its immediate neighbors.
2. Identify and Examine Each Point:
Let’s look at each point and compare it to its neighbors.
- Point (-2, -8): It doesn't have a left neighbor to compare, so it's not considered.
- Point (-1, -3):
[tex]\[ \text{Left neighbor} = (-2, -8), \quad \text{Right neighbor} = (0, -2) \][/tex]
[tex]\( -3 \)[/tex] is greater than [tex]\( -8 \)[/tex] and less than [tex]\( -2 \)[/tex], so it is not a local minimum.
- Point (0, -2):
[tex]\[ \text{Left neighbor} = (-1, -3), \quad \text{Right neighbor} = (1, 4) \][/tex]
[tex]\( -2 \)[/tex] is greater than [tex]\( -3 \)[/tex] and less than [tex]\( 4 \)[/tex], so it is not a local minimum.
- Point (1, 4):
[tex]\[ \text{Left neighbor} = (0, -2), \quad \text{Right neighbor} = (2, 1) \][/tex]
[tex]\( 4 \)[/tex] is greater than [tex]\( -2 \)[/tex] and greater than [tex]\( 1 \)[/tex], so it is not a local minimum.
- Point (2, 1):
[tex]\[ \text{Left neighbor} = (1, 4), \quad \text{Right neighbor} = (3, 3) \][/tex]
[tex]\( 1 \)[/tex] is less than [tex]\( 4 \)[/tex] and less than [tex]\( 3 \)[/tex], so it is a local minimum.
- Point (3, 3): It doesn't have a right neighbor to compare, so it's not considered.
3. Determine the Local Minimum:
Based on the above analysis, the point (2, 1) satisfies the condition of a local minimum because its value is less than the values of its immediate neighbors.
Therefore, the ordered pair closest to a local minimum of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ (2, 1) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.