Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Simplify the following expression and classify the resulting polynomial:

4x(x + 1) - (3x - 8)(x + 4)

A. quadratic binomial
B. linear binomial
C. quadratic trinomial
D. quadratic monomial


Sagot :

To solve and classify the given expression [tex]\( 4x(x+1) - (3x-8)(x+4) \)[/tex]:

1. Distribute and expand each part of the expression:
- [tex]\( 4x(x+1) \)[/tex]:
[tex]\[ 4x \cdot x + 4x \cdot 1 = 4x^2 + 4x \][/tex]
- [tex]\((3x-8)(x+4)\)[/tex]:
[tex]\[ (3x-8)(x+4) = 3x \cdot x + 3x \cdot 4 - 8 \cdot x - 8 \cdot 4 = 3x^2 + 12x - 8x - 32 = 3x^2 + 4x - 32 \][/tex]

2. Combine the two expressions:
The given expression is
[tex]\[ 4x(x+1) - (3x-8)(x+4) \][/tex]
Substituting the expanded forms, we get
[tex]\[ 4x^2 + 4x - (3x^2 + 4x - 32) \][/tex]

3. Distribute the minus sign through the second part:
[tex]\[ 4x^2 + 4x - 3x^2 - 4x + 32 \][/tex]

4. Combine like terms:
[tex]\[ 4x^2 - 3x^2 + 4x - 4x + 32 \][/tex]
[tex]\[ (4x^2 - 3x^2) + (4x - 4x) + 32 \][/tex]
[tex]\[ x^2 + 0 + 32 \][/tex]
Simplifies to:
[tex]\[ x^2 + 32 \][/tex]

5. Classify the resulting polynomial:
- The polynomial is [tex]\( x^2 + 32 \)[/tex].
- It has a degree of 2 (highest power of [tex]\( x \)[/tex] is 2).
- It has 2 distinct terms: [tex]\( x^2 \)[/tex] and 32.

Therefore, the simplified expression is [tex]\( x^2 + 32 \)[/tex] and it is a quadratic binomial.

So, the correct answer is:
A. quadratic binomial
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.