Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, let's break it down step by step:
### Step 1: Understanding the problem
The problem involves finding the correct quadratic equation for the area of a rectangular pen given its width and a total fencing of 100 meters. Additionally, we need to determine the dimensions of the rectangle that maximize this area.
### Step 2: Determine the perimeter relationship
The total perimeter (P) of the rectangle is given by:
[tex]\[ P = 2L + 2W \][/tex]
where [tex]\( L \)[/tex] is the length and [tex]\( W \)[/tex] is the width. The perimeter is given as 100 meters, so:
[tex]\[ 2L + 2W = 100 \][/tex]
Divide both sides by 2:
[tex]\[ L + W = 50 \][/tex]
Solving for [tex]\( L \)[/tex] in terms of [tex]\( W \)[/tex]:
[tex]\[ L = 50 - W \][/tex]
### Step 3: Express the area in terms of width
The area [tex]\( A \)[/tex] of the rectangle is given by:
[tex]\[ A = L \times W \][/tex]
Substituting [tex]\( L \)[/tex] from the previous step:
[tex]\[ A = (50 - W) \times W \][/tex]
[tex]\[ A = 50W - W^2 \][/tex]
### Step 4: Identify the quadratic equation
From the expression [tex]\( A = 50W - W^2 \)[/tex], we see that the correct option from the provided choices is:
[tex]\[ A(w) = 50w - w^2 \][/tex]
### Step 5: Determine the dimensions that maximize the area
The quadratic equation [tex]\( A(w) = 50w - w^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( w^2 \)[/tex] is negative). The width [tex]\( w \)[/tex] that maximizes the area is found at the vertex of the parabola.
For a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], the vertex occurs at:
[tex]\[ w = -\frac{b}{2a} \][/tex]
In our equation, [tex]\( A(w) = -w^2 + 50w \)[/tex], we have [tex]\( a = -1 \)[/tex] and [tex]\( b = 50 \)[/tex].
Thus, the width that maximizes the area is:
[tex]\[ w = -\frac{50}{2(-1)} \][/tex]
[tex]\[ w = \frac{50}{2} \][/tex]
[tex]\[ w = 25 \, \text{meters} \][/tex]
### Step 6: Calculate the corresponding length
Using the relationship [tex]\( L = 50 - W \)[/tex]:
[tex]\[ L = 50 - 25 \][/tex]
[tex]\[ L = 25 \, \text{meters} \][/tex]
### Final answer
The length and width of the greatest rectangular area that the farmer can enclose with 100 meters of fencing are both 25 meters.
Therefore, the length is [tex]\( 25 \, \text{m} \)[/tex] and the width is [tex]\( 25 \, \text{m} \)[/tex].
### Step 1: Understanding the problem
The problem involves finding the correct quadratic equation for the area of a rectangular pen given its width and a total fencing of 100 meters. Additionally, we need to determine the dimensions of the rectangle that maximize this area.
### Step 2: Determine the perimeter relationship
The total perimeter (P) of the rectangle is given by:
[tex]\[ P = 2L + 2W \][/tex]
where [tex]\( L \)[/tex] is the length and [tex]\( W \)[/tex] is the width. The perimeter is given as 100 meters, so:
[tex]\[ 2L + 2W = 100 \][/tex]
Divide both sides by 2:
[tex]\[ L + W = 50 \][/tex]
Solving for [tex]\( L \)[/tex] in terms of [tex]\( W \)[/tex]:
[tex]\[ L = 50 - W \][/tex]
### Step 3: Express the area in terms of width
The area [tex]\( A \)[/tex] of the rectangle is given by:
[tex]\[ A = L \times W \][/tex]
Substituting [tex]\( L \)[/tex] from the previous step:
[tex]\[ A = (50 - W) \times W \][/tex]
[tex]\[ A = 50W - W^2 \][/tex]
### Step 4: Identify the quadratic equation
From the expression [tex]\( A = 50W - W^2 \)[/tex], we see that the correct option from the provided choices is:
[tex]\[ A(w) = 50w - w^2 \][/tex]
### Step 5: Determine the dimensions that maximize the area
The quadratic equation [tex]\( A(w) = 50w - w^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( w^2 \)[/tex] is negative). The width [tex]\( w \)[/tex] that maximizes the area is found at the vertex of the parabola.
For a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], the vertex occurs at:
[tex]\[ w = -\frac{b}{2a} \][/tex]
In our equation, [tex]\( A(w) = -w^2 + 50w \)[/tex], we have [tex]\( a = -1 \)[/tex] and [tex]\( b = 50 \)[/tex].
Thus, the width that maximizes the area is:
[tex]\[ w = -\frac{50}{2(-1)} \][/tex]
[tex]\[ w = \frac{50}{2} \][/tex]
[tex]\[ w = 25 \, \text{meters} \][/tex]
### Step 6: Calculate the corresponding length
Using the relationship [tex]\( L = 50 - W \)[/tex]:
[tex]\[ L = 50 - 25 \][/tex]
[tex]\[ L = 25 \, \text{meters} \][/tex]
### Final answer
The length and width of the greatest rectangular area that the farmer can enclose with 100 meters of fencing are both 25 meters.
Therefore, the length is [tex]\( 25 \, \text{m} \)[/tex] and the width is [tex]\( 25 \, \text{m} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.