Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation of the line passing through the point [tex]\((12, 3)\)[/tex] that is perpendicular to the line [tex]\(y = -3x\)[/tex], we need to follow these steps:
1. Determine the slope of the given line:
The equation of the given line is [tex]\(y = -3x\)[/tex]. Here, the slope ([tex]\(m\)[/tex]) of the line is [tex]\(-3\)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the given line. So, the slope of the line perpendicular to [tex]\(y = -3x\)[/tex] is:
[tex]\[ \text{Perpendicular slope} = -\frac{1}{\text{slope of the given line}} = -\frac{1}{-3} = \frac{1}{3} \][/tex]
3. Use the point-slope form of the equation:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the point the line passes through. Substituting [tex]\((x_1, y_1) = (12, 3)\)[/tex] and the slope [tex]\(m = \frac{1}{3}\)[/tex], we get:
[tex]\[ y - 3 = \frac{1}{3}(x - 12) \][/tex]
4. Solve for [tex]\(y\)[/tex] to get the slope-intercept form:
Simplify the equation to put it into the form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 3 = \frac{1}{3}x - \frac{1}{3}(12) \][/tex]
[tex]\[ y - 3 = \frac{1}{3}x - 4 \][/tex]
Add 3 to both sides:
[tex]\[ y = \frac{1}{3}x - 4 + 3 \][/tex]
[tex]\[ y = \frac{1}{3}x - 1 \][/tex]
So, the equation of the line passing through the point [tex]\((12, 3)\)[/tex] and perpendicular to [tex]\(y = -3x\)[/tex] is:
[tex]\[ \boxed{y = \frac{1}{3}x - 1} \][/tex]
1. Determine the slope of the given line:
The equation of the given line is [tex]\(y = -3x\)[/tex]. Here, the slope ([tex]\(m\)[/tex]) of the line is [tex]\(-3\)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the given line. So, the slope of the line perpendicular to [tex]\(y = -3x\)[/tex] is:
[tex]\[ \text{Perpendicular slope} = -\frac{1}{\text{slope of the given line}} = -\frac{1}{-3} = \frac{1}{3} \][/tex]
3. Use the point-slope form of the equation:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the point the line passes through. Substituting [tex]\((x_1, y_1) = (12, 3)\)[/tex] and the slope [tex]\(m = \frac{1}{3}\)[/tex], we get:
[tex]\[ y - 3 = \frac{1}{3}(x - 12) \][/tex]
4. Solve for [tex]\(y\)[/tex] to get the slope-intercept form:
Simplify the equation to put it into the form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 3 = \frac{1}{3}x - \frac{1}{3}(12) \][/tex]
[tex]\[ y - 3 = \frac{1}{3}x - 4 \][/tex]
Add 3 to both sides:
[tex]\[ y = \frac{1}{3}x - 4 + 3 \][/tex]
[tex]\[ y = \frac{1}{3}x - 1 \][/tex]
So, the equation of the line passing through the point [tex]\((12, 3)\)[/tex] and perpendicular to [tex]\(y = -3x\)[/tex] is:
[tex]\[ \boxed{y = \frac{1}{3}x - 1} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.