Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the given problem step by step:
### 1. Finding the value of [tex]\(6!\)[/tex]:
To find the number of ways six people can be placed in a line for a photo, we use the factorial notation [tex]\(6!\)[/tex], which means multiplying all whole numbers from 1 to 6. Therefore, the calculation is as follows:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
So, the value of [tex]\(6!\)[/tex] is:
[tex]\[ \boxed{720} \][/tex]
### 2. Finding the number of ways to choose two people for specific roles:
When choosing two out of six people to perform specific roles (where order matters), we use permutations. The expression provided is:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Let's simplify this:
[tex]\[ \frac{6!}{4!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} = 6 \times 5 = 30 \][/tex]
So, the number of ways to choose the two people is:
[tex]\[ \boxed{30} \][/tex]
### 3. Finding the number of ways to choose a group of three people:
To determine the number of ways to choose a group of three people from six (where the order does not matter), we use combinations. The expression given is:
[tex]\[ \binom{6}{3} = \frac{6!}{(6-3)! \times 3!} \][/tex]
Let's simplify this:
[tex]\[ \binom{6}{3} = \frac{6!}{3! \times 3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways to choose the group of three people is:
[tex]\[ \boxed{20} \][/tex]
### 1. Finding the value of [tex]\(6!\)[/tex]:
To find the number of ways six people can be placed in a line for a photo, we use the factorial notation [tex]\(6!\)[/tex], which means multiplying all whole numbers from 1 to 6. Therefore, the calculation is as follows:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
So, the value of [tex]\(6!\)[/tex] is:
[tex]\[ \boxed{720} \][/tex]
### 2. Finding the number of ways to choose two people for specific roles:
When choosing two out of six people to perform specific roles (where order matters), we use permutations. The expression provided is:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Let's simplify this:
[tex]\[ \frac{6!}{4!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} = 6 \times 5 = 30 \][/tex]
So, the number of ways to choose the two people is:
[tex]\[ \boxed{30} \][/tex]
### 3. Finding the number of ways to choose a group of three people:
To determine the number of ways to choose a group of three people from six (where the order does not matter), we use combinations. The expression given is:
[tex]\[ \binom{6}{3} = \frac{6!}{(6-3)! \times 3!} \][/tex]
Let's simplify this:
[tex]\[ \binom{6}{3} = \frac{6!}{3! \times 3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways to choose the group of three people is:
[tex]\[ \boxed{20} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.