Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which points lie on the line of direct variation that goes through the point (5, 12), we first need to find the equation of the line. Since it’s a direct variation, the line can be described by the equation [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is the constant of variation (slope of the line).
1. Find the slope [tex]\( k \)[/tex] of the direct variation line:
Given the point (5, 12),
[tex]\[ k = \frac{y}{x} = \frac{12}{5} = 2.4 \][/tex]
Therefore, the line's equation is:
[tex]\[ y = 2.4x \][/tex]
2. Check each given point to see if it satisfies the equation [tex]\( y = 2.4x \)[/tex]:
- [tex]\((0, 0)\)[/tex]:
[tex]\[ y = 2.4 \cdot 0 = 0 \][/tex]
The point (0, 0) lies on the line.
- [tex]\((2.5, 6)\)[/tex]:
[tex]\[ y = 2.4 \cdot 2.5 = 6 \][/tex]
The point (2.5, 6) lies on the line.
- [tex]\((3, 10)\)[/tex]:
[tex]\[ y = 2.4 \cdot 3 = 7.2 \][/tex]
The point (3, 10) does not lie on the line.
- [tex]\((7.5, 18)\)[/tex]:
[tex]\[ y = 2.4 \cdot 7.5 = 18 \][/tex]
The point (7.5, 18) lies on the line.
- [tex]\((12.5, 24)\)[/tex]:
[tex]\[ y = 2.4 \cdot 12.5 = 30 \][/tex]
The point (12.5, 24) does not lie on the line.
- [tex]\((15, 36)\)[/tex]:
[tex]\[ y = 2.4 \cdot 15 = 36 \][/tex]
The point (15, 36) lies on the line.
3. Summary of points that lie on the line:
- [tex]\((0, 0)\)[/tex]
- [tex]\((2.5, 6)\)[/tex]
- [tex]\((7.5, 18)\)[/tex]
- [tex]\((15, 36)\)[/tex]
Therefore, the points that lie on the line of direct variation through (5, 12) are:
[tex]\[ (0, 0), (2.5, 6), (7.5, 18), (15, 36) \][/tex]
1. Find the slope [tex]\( k \)[/tex] of the direct variation line:
Given the point (5, 12),
[tex]\[ k = \frac{y}{x} = \frac{12}{5} = 2.4 \][/tex]
Therefore, the line's equation is:
[tex]\[ y = 2.4x \][/tex]
2. Check each given point to see if it satisfies the equation [tex]\( y = 2.4x \)[/tex]:
- [tex]\((0, 0)\)[/tex]:
[tex]\[ y = 2.4 \cdot 0 = 0 \][/tex]
The point (0, 0) lies on the line.
- [tex]\((2.5, 6)\)[/tex]:
[tex]\[ y = 2.4 \cdot 2.5 = 6 \][/tex]
The point (2.5, 6) lies on the line.
- [tex]\((3, 10)\)[/tex]:
[tex]\[ y = 2.4 \cdot 3 = 7.2 \][/tex]
The point (3, 10) does not lie on the line.
- [tex]\((7.5, 18)\)[/tex]:
[tex]\[ y = 2.4 \cdot 7.5 = 18 \][/tex]
The point (7.5, 18) lies on the line.
- [tex]\((12.5, 24)\)[/tex]:
[tex]\[ y = 2.4 \cdot 12.5 = 30 \][/tex]
The point (12.5, 24) does not lie on the line.
- [tex]\((15, 36)\)[/tex]:
[tex]\[ y = 2.4 \cdot 15 = 36 \][/tex]
The point (15, 36) lies on the line.
3. Summary of points that lie on the line:
- [tex]\((0, 0)\)[/tex]
- [tex]\((2.5, 6)\)[/tex]
- [tex]\((7.5, 18)\)[/tex]
- [tex]\((15, 36)\)[/tex]
Therefore, the points that lie on the line of direct variation through (5, 12) are:
[tex]\[ (0, 0), (2.5, 6), (7.5, 18), (15, 36) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.