Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the rational equation [tex]\(\frac{x}{4}=\frac{9}{15}\)[/tex], we need to find the value of [tex]\(x\)[/tex] that makes both sides of the equation equal. Here is the step-by-step solution:
1. Understand the initial equation:
[tex]\[ \frac{x}{4} = \frac{9}{15} \][/tex]
2. Cross-multiply to clear the fractions:
When you have an equation of the form [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex], you can solve it by cross-multiplying. This means you multiply the numerator of each fraction by the denominator of the other fraction.
[tex]\[ x \cdot 15 = 9 \cdot 4 \][/tex]
3. Calculate the products:
- The product of [tex]\(x\)[/tex] and 15 is [tex]\(15x\)[/tex].
- The product of 9 and 4 is [tex]\(36\)[/tex].
So, we have:
[tex]\[ 15x = 36 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 15.
[tex]\[ x = \frac{36}{15} \][/tex]
5. Simplify the fraction:
[tex]\[ x = 2.4 \][/tex]
Thus, the value of [tex]\(x\)[/tex] in the rational equation [tex]\(\frac{x}{4}=\frac{9}{15}\)[/tex] is [tex]\(2.4\)[/tex].
The answer is:
[tex]\[ \boxed{2.4} \][/tex]
1. Understand the initial equation:
[tex]\[ \frac{x}{4} = \frac{9}{15} \][/tex]
2. Cross-multiply to clear the fractions:
When you have an equation of the form [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex], you can solve it by cross-multiplying. This means you multiply the numerator of each fraction by the denominator of the other fraction.
[tex]\[ x \cdot 15 = 9 \cdot 4 \][/tex]
3. Calculate the products:
- The product of [tex]\(x\)[/tex] and 15 is [tex]\(15x\)[/tex].
- The product of 9 and 4 is [tex]\(36\)[/tex].
So, we have:
[tex]\[ 15x = 36 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 15.
[tex]\[ x = \frac{36}{15} \][/tex]
5. Simplify the fraction:
[tex]\[ x = 2.4 \][/tex]
Thus, the value of [tex]\(x\)[/tex] in the rational equation [tex]\(\frac{x}{4}=\frac{9}{15}\)[/tex] is [tex]\(2.4\)[/tex].
The answer is:
[tex]\[ \boxed{2.4} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.