Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

If [tex]\( f(x) \)[/tex] and its inverse function, [tex]\( f^{-1}(x) \)[/tex], are both plotted on the same coordinate plane, what is their point of intersection?

A. [tex]\((0, -2)\)[/tex]
B. [tex]\((1, -1)\)[/tex]


Sagot :

To determine the point of intersection between a function [tex]\( f(x) \)[/tex] and its inverse function [tex]\( f^{-1}(x) \)[/tex], we need to identify where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] cross each other. By definition, the point of intersection occurs where [tex]\( f(x) = f^{-1}(x) \)[/tex]. This implies that at the intersection point, the x-coordinate and y-coordinate are equal, resulting in a point [tex]\((x, x)\)[/tex].

Given the two possible points of intersection:
1. [tex]\((0, -2)\)[/tex]
2. [tex]\((1, -1)\)[/tex]

We will check each point to see if it fits the form [tex]\((x, x)\)[/tex], meaning both coordinates are the same.

Checking the first point [tex]\((0, -2)\)[/tex]:
- The x-coordinate is [tex]\(0\)[/tex] and the y-coordinate is [tex]\(-2\)[/tex].
- Since [tex]\(0 \neq -2\)[/tex], this point does not satisfy the condition [tex]\( x = y \)[/tex].

Checking the second point [tex]\((1, -1)\)[/tex]:
- The x-coordinate is [tex]\(1\)[/tex] and the y-coordinate is [tex]\(-1\)[/tex].
- Since [tex]\(1 \neq -1\)[/tex], this point also does not satisfy the condition [tex]\( x = y \)[/tex].

Hence, neither of the given points [tex]\((0, -2)\)[/tex] nor [tex]\((1, -1)\)[/tex] satisfy the condition required for the point of intersection between [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex].

Therefore, based on the provided choices,
there is no valid intersection point in the provided choices.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.