Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve and simplify the given mathematical expression [tex]\(\frac{7x - 3}{x + 2}\)[/tex], we will go through the following steps:
1. Understanding the Expression:
- The numerator of the fraction is [tex]\(7x - 3\)[/tex].
- The denominator of the fraction is [tex]\(x + 2\)[/tex].
2. Simplifying:
- In this case, the expression [tex]\(\frac{7x - 3}{x + 2}\)[/tex] is already in its simplest form because there are no common factors between the numerator and the denominator that can be canceled out.
3. Domain Considerations:
- It's important to note the domain of the expression. The denominator [tex]\(x + 2\)[/tex] cannot be zero because division by zero is undefined.
- Therefore, [tex]\(x + 2 \neq 0\)[/tex], which implies [tex]\(x \neq -2\)[/tex].
4. Final Expression:
- After confirming that it is in its simplest form and considering the domain, the simplified expression remains [tex]\(\frac{7x - 3}{x + 2}\)[/tex].
In conclusion, the expression [tex]\(\frac{7x - 3}{x + 2}\)[/tex] is already simplified and valid for all [tex]\(x\)[/tex] except [tex]\(x = -2\)[/tex]. This is the final result.
1. Understanding the Expression:
- The numerator of the fraction is [tex]\(7x - 3\)[/tex].
- The denominator of the fraction is [tex]\(x + 2\)[/tex].
2. Simplifying:
- In this case, the expression [tex]\(\frac{7x - 3}{x + 2}\)[/tex] is already in its simplest form because there are no common factors between the numerator and the denominator that can be canceled out.
3. Domain Considerations:
- It's important to note the domain of the expression. The denominator [tex]\(x + 2\)[/tex] cannot be zero because division by zero is undefined.
- Therefore, [tex]\(x + 2 \neq 0\)[/tex], which implies [tex]\(x \neq -2\)[/tex].
4. Final Expression:
- After confirming that it is in its simplest form and considering the domain, the simplified expression remains [tex]\(\frac{7x - 3}{x + 2}\)[/tex].
In conclusion, the expression [tex]\(\frac{7x - 3}{x + 2}\)[/tex] is already simplified and valid for all [tex]\(x\)[/tex] except [tex]\(x = -2\)[/tex]. This is the final result.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.