At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
In this problem, we are given a table that provides the masses [tex]\( M \)[/tex] and [tex]\( m \)[/tex] of two objects for several cases, along with their resulting accelerations [tex]\( a \)[/tex]. We need to calculate the unknown accelerations for the last two cases. The given information and the required unknowns can similarly be analyzed using Newton's second law in the context of two-body systems connected by a string over a frictionless pulley.
The formula to calculate the acceleration [tex]\( a \)[/tex] of the system is:
[tex]\[ a = \frac{(M - m) \cdot g}{(M + m)} \][/tex]
where:
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- [tex]\( M \)[/tex] and [tex]\( m \)[/tex] are the masses in [tex]\( \text{kg} \)[/tex].
We are given:
1. [tex]\( M = 13 \, \text{kg}, m = 6 \, \text{kg}, a = 11.4 \, \text{m/s}^2 \)[/tex]
2. [tex]\( M = 13 \, \text{kg}, m = 9 \, \text{kg}, a = 1.4 \, \text{m/s}^2 \)[/tex]
3. [tex]\( M = 13 \, \text{kg}, m = 12 \, \text{kg}, a = \text{?} \)[/tex]
4. [tex]\( M = 16 \, \text{kg}, m = 12 \, \text{kg}, a = \text{?} \)[/tex]
Let's solve for the unknown accelerations [tex]\( a \)[/tex] in the last two cases.
Case 3:
[tex]\[ M = 13 \, \text{kg}, m = 12 \, \text{kg} \][/tex]
Using the formula:
[tex]\[ a_3 = \frac{(13 - 12) \cdot 9.8}{(13 + 12)} \][/tex]
Breaking it down step by step:
- Numerator: [tex]\( 13 - 12 = 1 \)[/tex]
- Denominator: [tex]\( 13 + 12 = 25 \)[/tex]
So,
[tex]\[ a_3 = \frac{1 \cdot 9.8}{25} = \frac{9.8}{25} \approx 0.392 \, \text{m/s}^2 \][/tex]
Case 4:
[tex]\[ M = 16 \, \text{kg}, m = 12 \, \text{kg} \][/tex]
Again, using the formula:
[tex]\[ a_4 = \frac{(16 - 12) \cdot 9.8}{(16 + 12)} \][/tex]
Step by step:
- Numerator: [tex]\( 16 - 12 = 4 \)[/tex]
- Denominator: [tex]\( 16 + 12 = 28 \)[/tex]
So,
[tex]\[ a_4 = \frac{4 \cdot 9.8}{28} = \frac{39.2}{28} \approx 1.400 \, \text{m/s}^2 \][/tex]
Therefore, the unknown accelerations for the given masses are:
- For [tex]\( M = 13 \, \text{kg} \)[/tex] and [tex]\( m = 12 \, \text{kg} \)[/tex]: [tex]\( a_3 \approx 0.392 \, \text{m/s}^2 \)[/tex]
- For [tex]\( M = 16 \, \text{kg} \)[/tex] and [tex]\( m = 12 \, \text{kg} \)[/tex]: [tex]\( a_4 \approx 1.400 \, \text{m/s}^2 \)[/tex]
The formula to calculate the acceleration [tex]\( a \)[/tex] of the system is:
[tex]\[ a = \frac{(M - m) \cdot g}{(M + m)} \][/tex]
where:
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- [tex]\( M \)[/tex] and [tex]\( m \)[/tex] are the masses in [tex]\( \text{kg} \)[/tex].
We are given:
1. [tex]\( M = 13 \, \text{kg}, m = 6 \, \text{kg}, a = 11.4 \, \text{m/s}^2 \)[/tex]
2. [tex]\( M = 13 \, \text{kg}, m = 9 \, \text{kg}, a = 1.4 \, \text{m/s}^2 \)[/tex]
3. [tex]\( M = 13 \, \text{kg}, m = 12 \, \text{kg}, a = \text{?} \)[/tex]
4. [tex]\( M = 16 \, \text{kg}, m = 12 \, \text{kg}, a = \text{?} \)[/tex]
Let's solve for the unknown accelerations [tex]\( a \)[/tex] in the last two cases.
Case 3:
[tex]\[ M = 13 \, \text{kg}, m = 12 \, \text{kg} \][/tex]
Using the formula:
[tex]\[ a_3 = \frac{(13 - 12) \cdot 9.8}{(13 + 12)} \][/tex]
Breaking it down step by step:
- Numerator: [tex]\( 13 - 12 = 1 \)[/tex]
- Denominator: [tex]\( 13 + 12 = 25 \)[/tex]
So,
[tex]\[ a_3 = \frac{1 \cdot 9.8}{25} = \frac{9.8}{25} \approx 0.392 \, \text{m/s}^2 \][/tex]
Case 4:
[tex]\[ M = 16 \, \text{kg}, m = 12 \, \text{kg} \][/tex]
Again, using the formula:
[tex]\[ a_4 = \frac{(16 - 12) \cdot 9.8}{(16 + 12)} \][/tex]
Step by step:
- Numerator: [tex]\( 16 - 12 = 4 \)[/tex]
- Denominator: [tex]\( 16 + 12 = 28 \)[/tex]
So,
[tex]\[ a_4 = \frac{4 \cdot 9.8}{28} = \frac{39.2}{28} \approx 1.400 \, \text{m/s}^2 \][/tex]
Therefore, the unknown accelerations for the given masses are:
- For [tex]\( M = 13 \, \text{kg} \)[/tex] and [tex]\( m = 12 \, \text{kg} \)[/tex]: [tex]\( a_3 \approx 0.392 \, \text{m/s}^2 \)[/tex]
- For [tex]\( M = 16 \, \text{kg} \)[/tex] and [tex]\( m = 12 \, \text{kg} \)[/tex]: [tex]\( a_4 \approx 1.400 \, \text{m/s}^2 \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.