Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the [tex]\(x\)[/tex]-intercepts of a continuous function given in the table, we need to identify the [tex]\(x\)[/tex]-values where [tex]\(f(x) = 0\)[/tex]. These points are where the graph of the function crosses the [tex]\(x\)[/tex]-axis.
Let's examine each pair [tex]\((x, f(x))\)[/tex] from the table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 0 \\ \hline -2 & 2 \\ \hline 0 & 8 \\ \hline 2 & 2 \\ \hline 4 & 0 \\ \hline 6 & -2 \\ \hline \end{array} \][/tex]
We need to find the [tex]\(x\)[/tex]-values where [tex]\(f(x) = 0\)[/tex]. Let's look at each row:
- For [tex]\(x = -4\)[/tex], [tex]\(f(x) = 0\)[/tex]. Thus, [tex]\((-4, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = -2\)[/tex], [tex]\(f(x) = 2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 0\)[/tex], [tex]\(f(x) = 8\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 2\)[/tex], [tex]\(f(x) = 2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 4\)[/tex], [tex]\(f(x) = 0\)[/tex]. Thus, [tex]\((4, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 6\)[/tex], [tex]\(f(x) = -2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
From this analysis, the [tex]\(x\)[/tex]-intercepts are [tex]\((-4, 0)\)[/tex] and [tex]\((4, 0)\)[/tex].
Therefore, the correct answer is:
[tex]\[ (-4, 0), (4, 0) \][/tex]
Let's examine each pair [tex]\((x, f(x))\)[/tex] from the table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 0 \\ \hline -2 & 2 \\ \hline 0 & 8 \\ \hline 2 & 2 \\ \hline 4 & 0 \\ \hline 6 & -2 \\ \hline \end{array} \][/tex]
We need to find the [tex]\(x\)[/tex]-values where [tex]\(f(x) = 0\)[/tex]. Let's look at each row:
- For [tex]\(x = -4\)[/tex], [tex]\(f(x) = 0\)[/tex]. Thus, [tex]\((-4, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = -2\)[/tex], [tex]\(f(x) = 2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 0\)[/tex], [tex]\(f(x) = 8\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 2\)[/tex], [tex]\(f(x) = 2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 4\)[/tex], [tex]\(f(x) = 0\)[/tex]. Thus, [tex]\((4, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept.
- For [tex]\(x = 6\)[/tex], [tex]\(f(x) = -2\)[/tex]. Since [tex]\(f(x) \neq 0\)[/tex], this is not an [tex]\(x\)[/tex]-intercept.
From this analysis, the [tex]\(x\)[/tex]-intercepts are [tex]\((-4, 0)\)[/tex] and [tex]\((4, 0)\)[/tex].
Therefore, the correct answer is:
[tex]\[ (-4, 0), (4, 0) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.