At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the product of [tex]\((5r - 4)\)[/tex] and [tex]\((r^2 - 6r + 4)\)[/tex], we need to use the distributive property, also known as the FOIL method, which stands for First, Outer, Inner, Last. This method helps in expanding the product of two binomials or generally in distributing each term of the first polynomial to every term of the second polynomial.
Let's break down the multiplication step by step:
1. Distribute [tex]\(5r\)[/tex] to each term in [tex]\(r^2 - 6r + 4\)[/tex]:
[tex]\[ 5r \cdot r^2 = 5r^3 \][/tex]
[tex]\[ 5r \cdot (-6r) = -30r^2 \][/tex]
[tex]\[ 5r \cdot 4 = 20r \][/tex]
2. Distribute [tex]\(-4\)[/tex] to each term in [tex]\(r^2 - 6r + 4\)[/tex]:
[tex]\[ -4 \cdot r^2 = -4r^2 \][/tex]
[tex]\[ -4 \cdot (-6r) = 24r \][/tex]
[tex]\[ -4 \cdot 4 = -16 \][/tex]
3. Combine all the terms:
[tex]\[ 5r^3 - 30r^2 + 20r - 4r^2 + 24r - 16 \][/tex]
4. Combine like terms:
[tex]\[ 5r^3 + (-30r^2 - 4r^2) + (20r + 24r) - 16 \][/tex]
[tex]\[ 5r^3 - 34r^2 + 44r - 16 \][/tex]
So, the product of [tex]\((5r - 4)\)[/tex] and [tex]\((r^2 - 6r + 4)\)[/tex] is:
[tex]\[ 5r^3 - 34r^2 + 44r - 16 \][/tex]
Thus, the correct answer is [tex]\(5r^3 - 34r^2 + 44r - 16\)[/tex].
Let's break down the multiplication step by step:
1. Distribute [tex]\(5r\)[/tex] to each term in [tex]\(r^2 - 6r + 4\)[/tex]:
[tex]\[ 5r \cdot r^2 = 5r^3 \][/tex]
[tex]\[ 5r \cdot (-6r) = -30r^2 \][/tex]
[tex]\[ 5r \cdot 4 = 20r \][/tex]
2. Distribute [tex]\(-4\)[/tex] to each term in [tex]\(r^2 - 6r + 4\)[/tex]:
[tex]\[ -4 \cdot r^2 = -4r^2 \][/tex]
[tex]\[ -4 \cdot (-6r) = 24r \][/tex]
[tex]\[ -4 \cdot 4 = -16 \][/tex]
3. Combine all the terms:
[tex]\[ 5r^3 - 30r^2 + 20r - 4r^2 + 24r - 16 \][/tex]
4. Combine like terms:
[tex]\[ 5r^3 + (-30r^2 - 4r^2) + (20r + 24r) - 16 \][/tex]
[tex]\[ 5r^3 - 34r^2 + 44r - 16 \][/tex]
So, the product of [tex]\((5r - 4)\)[/tex] and [tex]\((r^2 - 6r + 4)\)[/tex] is:
[tex]\[ 5r^3 - 34r^2 + 44r - 16 \][/tex]
Thus, the correct answer is [tex]\(5r^3 - 34r^2 + 44r - 16\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.