Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the volume of a right circular cone with given dimensions, we will use the volume formula for a cone, which is:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
Let's break down the steps:
1. Identify the given values:
- Height ([tex]\( h \)[/tex]) = 18.5 inches
- Diameter of the base = 17.5 inches
2. Calculate the radius:
[tex]\[ r = \frac{\text{Diameter}}{2} = \frac{17.5}{2} = 8.75 \text{ inches} \][/tex]
3. Substitute the known values into the volume formula:
[tex]\[ V = \frac{1}{3} \pi (8.75)^2 (18.5) \][/tex]
4. Evaluate the square of the radius:
[tex]\[ 8.75^2 = 76.5625 \][/tex]
5. Perform the multiplication inside the formula:
[tex]\[ V = \frac{1}{3} \pi (76.5625) (18.5) \][/tex]
6. Multiply these numbers to find the volume:
[tex]\[ V = \frac{1}{3} \pi \times 1416.41625 \][/tex]
7. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ V \approx \frac{1}{3} \times 3.14159 \times 1416.41625 \approx 1483.257156499556 \][/tex]
8. Round the volume to the nearest tenth:
[tex]\[ V \approx 1483.3 \text{ cubic inches} \][/tex]
Hence, the volume of the right circular cone, rounded to the nearest tenth of a cubic inch, is approximately [tex]\( 1483.3 \)[/tex] cubic inches.
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
Let's break down the steps:
1. Identify the given values:
- Height ([tex]\( h \)[/tex]) = 18.5 inches
- Diameter of the base = 17.5 inches
2. Calculate the radius:
[tex]\[ r = \frac{\text{Diameter}}{2} = \frac{17.5}{2} = 8.75 \text{ inches} \][/tex]
3. Substitute the known values into the volume formula:
[tex]\[ V = \frac{1}{3} \pi (8.75)^2 (18.5) \][/tex]
4. Evaluate the square of the radius:
[tex]\[ 8.75^2 = 76.5625 \][/tex]
5. Perform the multiplication inside the formula:
[tex]\[ V = \frac{1}{3} \pi (76.5625) (18.5) \][/tex]
6. Multiply these numbers to find the volume:
[tex]\[ V = \frac{1}{3} \pi \times 1416.41625 \][/tex]
7. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ V \approx \frac{1}{3} \times 3.14159 \times 1416.41625 \approx 1483.257156499556 \][/tex]
8. Round the volume to the nearest tenth:
[tex]\[ V \approx 1483.3 \text{ cubic inches} \][/tex]
Hence, the volume of the right circular cone, rounded to the nearest tenth of a cubic inch, is approximately [tex]\( 1483.3 \)[/tex] cubic inches.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.