Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the average rate at which the object falls during the first 3 seconds, we need to find the change in height over the change in time. This can be achieved by calculating the difference in height at [tex]\( t = 3 \)[/tex] seconds and [tex]\( t = 0 \)[/tex] seconds, and then dividing by the time interval, which is 3 seconds.
Given the height function:
[tex]\[ h(t) = 300 - 16t^2 \][/tex]
1. Calculate [tex]\( h(3) \)[/tex]:
[tex]\[ h(3) = 300 - 16(3)^2 = 300 - 144 = 156 \][/tex]
2. Calculate [tex]\( h(0) \)[/tex]:
[tex]\[ h(0) = 300 - 16(0)^2 = 300 \][/tex]
3. Determine the change in height over the 3-second interval:
[tex]\[ h(3) - h(0) = 156 - 300 = -144 \][/tex]
4. Divide the change in height by the time interval to find the average rate of fall:
[tex]\[ \frac{h(3) - h(0)}{3} = \frac{-144}{3} = -48 \][/tex]
Thus, the expression [tex]\(\frac{h(3) - h(0)}{3}\)[/tex] correctly determines the average rate at which the object falls during the first 3 seconds of its fall. Therefore, the answer is:
[tex]\[ \boxed{\frac{h(3) - h(0)}{3}} \][/tex]
Given the height function:
[tex]\[ h(t) = 300 - 16t^2 \][/tex]
1. Calculate [tex]\( h(3) \)[/tex]:
[tex]\[ h(3) = 300 - 16(3)^2 = 300 - 144 = 156 \][/tex]
2. Calculate [tex]\( h(0) \)[/tex]:
[tex]\[ h(0) = 300 - 16(0)^2 = 300 \][/tex]
3. Determine the change in height over the 3-second interval:
[tex]\[ h(3) - h(0) = 156 - 300 = -144 \][/tex]
4. Divide the change in height by the time interval to find the average rate of fall:
[tex]\[ \frac{h(3) - h(0)}{3} = \frac{-144}{3} = -48 \][/tex]
Thus, the expression [tex]\(\frac{h(3) - h(0)}{3}\)[/tex] correctly determines the average rate at which the object falls during the first 3 seconds of its fall. Therefore, the answer is:
[tex]\[ \boxed{\frac{h(3) - h(0)}{3}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.