Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the question step-by-step. Given:
- Two sides of the triangle are [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex].
- The angle between these two sides is [tex]\( \theta = 60^\circ \)[/tex].
To find the third side [tex]\( c \)[/tex], we'll use the cosine rule which states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\theta) \][/tex]
Let's break this down:
1. Calculate [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex]:
- [tex]\( a^2 = 2^2 = 4 \)[/tex]
- [tex]\( b^2 = 3^2 = 9 \)[/tex]
2. Calculate [tex]\( 2ab \cos(\theta) \)[/tex]:
- [tex]\( 2ab = 2 \times 2 \times 3 = 12 \)[/tex]
- [tex]\( \cos(60^\circ) = \frac{1}{2} \)[/tex]
- Therefore, [tex]\( 2ab \cos(60^\circ) = 12 \times \frac{1}{2} = 6 \)[/tex]
3. Substitute these values into the cosine rule equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\theta) \][/tex]
[tex]\[ c^2 = 4 + 9 - 6 \][/tex]
4. Simplify the equation:
[tex]\[ c^2 = 4 + 9 - 6 = 7 \][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Hence, the length of the third side of the triangle is [tex]\( \sqrt{7} \)[/tex]. The correct answer is:
A. [tex]\( \sqrt{7} \)[/tex]
- Two sides of the triangle are [tex]\( a = 2 \)[/tex] and [tex]\( b = 3 \)[/tex].
- The angle between these two sides is [tex]\( \theta = 60^\circ \)[/tex].
To find the third side [tex]\( c \)[/tex], we'll use the cosine rule which states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\theta) \][/tex]
Let's break this down:
1. Calculate [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex]:
- [tex]\( a^2 = 2^2 = 4 \)[/tex]
- [tex]\( b^2 = 3^2 = 9 \)[/tex]
2. Calculate [tex]\( 2ab \cos(\theta) \)[/tex]:
- [tex]\( 2ab = 2 \times 2 \times 3 = 12 \)[/tex]
- [tex]\( \cos(60^\circ) = \frac{1}{2} \)[/tex]
- Therefore, [tex]\( 2ab \cos(60^\circ) = 12 \times \frac{1}{2} = 6 \)[/tex]
3. Substitute these values into the cosine rule equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\theta) \][/tex]
[tex]\[ c^2 = 4 + 9 - 6 \][/tex]
4. Simplify the equation:
[tex]\[ c^2 = 4 + 9 - 6 = 7 \][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Hence, the length of the third side of the triangle is [tex]\( \sqrt{7} \)[/tex]. The correct answer is:
A. [tex]\( \sqrt{7} \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.