Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's go through the steps to find the values of [tex]\( u_2 \)[/tex], [tex]\( u_3 \)[/tex], and the solution to 5 decimal places.
### Part (a)
The sequence is defined by the iterative process:
[tex]\[ u_{n+1} = \frac{3}{u_n + 1} \][/tex]
with the initial value [tex]\( u_1 = 4 \)[/tex].
1. Calculate [tex]\( u_2 \)[/tex]:
[tex]\[ u_2 = \frac{3}{u_1 + 1} \][/tex]
Substitute [tex]\( u_1 = 4 \)[/tex]:
[tex]\[ u_2 = \frac{3}{4 + 1} = \frac{3}{5} = 0.6 \][/tex]
2. Calculate [tex]\( u_3 \)[/tex]:
[tex]\[ u_3 = \frac{3}{u_2 + 1} \][/tex]
Substitute [tex]\( u_2 = 0.6 \)[/tex]:
[tex]\[ u_3 = \frac{3}{0.6 + 1} = \frac{3}{1.6} = 1.875 \][/tex]
So, the values of [tex]\( u_2 \)[/tex] and [tex]\( u_3 \)[/tex] are:
[tex]\[ u_2 = 0.6 \][/tex]
[tex]\[ u_3 = 1.875 \][/tex]
### Part (b)
To find the steady-state solution [tex]\( x \)[/tex], we solve the equation:
[tex]\[ x = \frac{3}{x + 1} \][/tex]
Multiplying both sides by [tex]\( x + 1 \)[/tex] to clear the fraction:
[tex]\[ x(x + 1) = 3 \][/tex]
[tex]\[ x^2 + x = 3 \][/tex]
[tex]\[ x^2 + x - 3 = 0 \][/tex]
This is a quadratic equation. We solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 12}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{13}}{2} \][/tex]
So, we have two solutions:
[tex]\[ x = \frac{-1 + \sqrt{13}}{2} \][/tex]
[tex]\[ x = \frac{-1 - \sqrt{13}}{2} \][/tex]
The second solution is negative, and since [tex]\( x \)[/tex] must be positive (as each term in the sequence is positive), we take:
[tex]\[ x = \frac{-1 + \sqrt{13}}{2} \][/tex]
To five decimal places:
[tex]\[ x \approx 1.3028 \][/tex]
Thus, the steady-state solution to 5 decimal places is:
[tex]\[ x = 1.30280 \][/tex]
### Summary
- [tex]\( u_2 = 0.6 \)[/tex]
- [tex]\( u_3 = 1.875 \)[/tex]
- [tex]\( x = 1.30280 \)[/tex]
Each step breaks down how to iteratively determine the next term in the sequence and find the steady-state solution using algebraic methods.
### Part (a)
The sequence is defined by the iterative process:
[tex]\[ u_{n+1} = \frac{3}{u_n + 1} \][/tex]
with the initial value [tex]\( u_1 = 4 \)[/tex].
1. Calculate [tex]\( u_2 \)[/tex]:
[tex]\[ u_2 = \frac{3}{u_1 + 1} \][/tex]
Substitute [tex]\( u_1 = 4 \)[/tex]:
[tex]\[ u_2 = \frac{3}{4 + 1} = \frac{3}{5} = 0.6 \][/tex]
2. Calculate [tex]\( u_3 \)[/tex]:
[tex]\[ u_3 = \frac{3}{u_2 + 1} \][/tex]
Substitute [tex]\( u_2 = 0.6 \)[/tex]:
[tex]\[ u_3 = \frac{3}{0.6 + 1} = \frac{3}{1.6} = 1.875 \][/tex]
So, the values of [tex]\( u_2 \)[/tex] and [tex]\( u_3 \)[/tex] are:
[tex]\[ u_2 = 0.6 \][/tex]
[tex]\[ u_3 = 1.875 \][/tex]
### Part (b)
To find the steady-state solution [tex]\( x \)[/tex], we solve the equation:
[tex]\[ x = \frac{3}{x + 1} \][/tex]
Multiplying both sides by [tex]\( x + 1 \)[/tex] to clear the fraction:
[tex]\[ x(x + 1) = 3 \][/tex]
[tex]\[ x^2 + x = 3 \][/tex]
[tex]\[ x^2 + x - 3 = 0 \][/tex]
This is a quadratic equation. We solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 12}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{13}}{2} \][/tex]
So, we have two solutions:
[tex]\[ x = \frac{-1 + \sqrt{13}}{2} \][/tex]
[tex]\[ x = \frac{-1 - \sqrt{13}}{2} \][/tex]
The second solution is negative, and since [tex]\( x \)[/tex] must be positive (as each term in the sequence is positive), we take:
[tex]\[ x = \frac{-1 + \sqrt{13}}{2} \][/tex]
To five decimal places:
[tex]\[ x \approx 1.3028 \][/tex]
Thus, the steady-state solution to 5 decimal places is:
[tex]\[ x = 1.30280 \][/tex]
### Summary
- [tex]\( u_2 = 0.6 \)[/tex]
- [tex]\( u_3 = 1.875 \)[/tex]
- [tex]\( x = 1.30280 \)[/tex]
Each step breaks down how to iteratively determine the next term in the sequence and find the steady-state solution using algebraic methods.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.