Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Determine the number of [tex]\(x\)[/tex]-intercepts for the function:

[tex]\[ f(x) = (x+5)^3(x-9)(x+1) \][/tex]


Sagot :

To determine the number of [tex]\( x \)[/tex]-intercepts for the function [tex]\( f(x) = (x+5)^3(x-9)(x+1) \)[/tex], follow these steps:

1. Identify the factors of the function: The given function can be expressed as a product of simpler factors:
[tex]\[ f(x) = (x+5)^3 (x-9) (x+1) \][/tex]

2. Set the function equal to zero: The [tex]\( x \)[/tex]-intercepts occur where the function equals zero:
[tex]\[ f(x) = 0 \][/tex]
This means:
[tex]\[ (x+5)^3 (x-9) (x+1) = 0 \][/tex]

3. Solve for [tex]\( x \)[/tex]: Determine the values of [tex]\( x \)[/tex] that make each factor equal to zero.

- For the factor [tex]\((x+5)^3\)[/tex], set [tex]\( x+5 = 0 \)[/tex]:
[tex]\[ x+5 = 0 \implies x = -5 \][/tex]
Since this factor is cubed, [tex]\( x = -5 \)[/tex] is a root with multiplicity 3.

- For the factor [tex]\((x-9)\)[/tex], set [tex]\( x-9 = 0 \)[/tex]:
[tex]\[ x-9 = 0 \implies x = 9 \][/tex]
This factor is linear, so [tex]\( x = 9 \)[/tex] is a root with multiplicity 1.

- For the factor [tex]\((x+1)\)[/tex], set [tex]\( x+1 = 0 \)[/tex]:
[tex]\[ x+1 = 0 \implies x = -1 \][/tex]
This factor is also linear, so [tex]\( x = -1 \)[/tex] is a root with multiplicity 1.

4. List the distinct roots: The distinct values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( f(x) = 0 \)[/tex] are:
[tex]\[ x = -5, \quad x = 9, \quad x = -1 \][/tex]

5. Count the number of distinct [tex]\( x \)[/tex]-intercepts: Even though [tex]\( x = -5 \)[/tex] has a multiplicity of 3, it is counted as one distinct [tex]\( x \)[/tex]-intercept.

So, the distinct [tex]\( x \)[/tex]-intercepts are:
[tex]\[ [-5, 9, -1] \][/tex]

The number of [tex]\( x \)[/tex]-intercepts for this function is [tex]\( 3 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.