Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the energy generated from freezing [tex]\(2.5 \text{ g}\)[/tex] of water, you need to follow these steps:
1. Determine the number of moles of water:
- Given the mass of water [tex]\(2.5 \text{ g}\)[/tex] and its molar mass [tex]\(18.02 \text{ g/mol}\)[/tex], calculate the number of moles using the formula:
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass}} \][/tex]
Plugging in the values:
[tex]\[ \text{moles of water} = \frac{2.5 \text{ g}}{18.02 \text{ g/mol}} \approx 0.1387 \text{ mol} \][/tex]
2. Calculate the energy generated from freezing:
- The enthalpy change for the phase transition from liquid to solid (freezing point) is known as the enthalpy of fusion ([tex]\(\Delta H_{\text{fusion}}\)[/tex]), which is given as [tex]\(6.03 \text{ kJ/mol}\)[/tex].
- The energy generated can be calculated by multiplying the number of moles of water by the enthalpy of fusion:
[tex]\[ \text{energy generated} = \text{moles of water} \times \Delta H_{\text{fusion}} \][/tex]
Plugging in the values:
[tex]\[ \text{energy generated} = 0.1387 \text{ mol} \times 6.03 \text{ kJ/mol} \approx 0.8366 \text{ kJ} \][/tex]
Therefore, the correct option is:
B. [tex]\(2.5 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} \times 6.03 \text{ kJ/mol}\)[/tex]
1. Determine the number of moles of water:
- Given the mass of water [tex]\(2.5 \text{ g}\)[/tex] and its molar mass [tex]\(18.02 \text{ g/mol}\)[/tex], calculate the number of moles using the formula:
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass}} \][/tex]
Plugging in the values:
[tex]\[ \text{moles of water} = \frac{2.5 \text{ g}}{18.02 \text{ g/mol}} \approx 0.1387 \text{ mol} \][/tex]
2. Calculate the energy generated from freezing:
- The enthalpy change for the phase transition from liquid to solid (freezing point) is known as the enthalpy of fusion ([tex]\(\Delta H_{\text{fusion}}\)[/tex]), which is given as [tex]\(6.03 \text{ kJ/mol}\)[/tex].
- The energy generated can be calculated by multiplying the number of moles of water by the enthalpy of fusion:
[tex]\[ \text{energy generated} = \text{moles of water} \times \Delta H_{\text{fusion}} \][/tex]
Plugging in the values:
[tex]\[ \text{energy generated} = 0.1387 \text{ mol} \times 6.03 \text{ kJ/mol} \approx 0.8366 \text{ kJ} \][/tex]
Therefore, the correct option is:
B. [tex]\(2.5 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} \times 6.03 \text{ kJ/mol}\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.