Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which number among the options is irrational, we need to first understand what irrational numbers are. An irrational number is a number that cannot be expressed as a fraction of two integers. It has a non-repeating, non-terminating decimal representation.
Let's examine each option:
### Option A: [tex]$\pi$[/tex]
- [tex]$\pi$[/tex] (Pi) is a well-known mathematical constant that represents the ratio of a circle's circumference to its diameter.
- The decimal representation of [tex]$\pi$[/tex] is approximately 3.1415926535..., and it continues infinitely without repeating.
- [tex]$\pi$[/tex] cannot be expressed as a fraction of two integers, hence it is an irrational number.
### Option B: 0.7
- 0.7 is a finite decimal.
- It can be expressed as the fraction [tex]\(\frac{7}{10}\)[/tex], which is a ratio of two integers.
- Therefore, 0.7 is a rational number.
### Option C: 0.277277277...
- The number 0.277277277... is a repeating decimal.
- This can be expressed as the fraction [tex]\(\frac{277}{999}\)[/tex] (or in another form after simplifying, but it is clearly a ratio of two integers).
- Thus, 0.277277277... is a rational number.
### Option D: [tex]$0.333...$[/tex]
- The number 0.333... is also a repeating decimal.
- This can be expressed as the fraction [tex]\(\frac{1}{3}\)[/tex].
- Therefore, 0.333... is a rational number.
From this analysis, we can conclude that the number [tex]$\pi$[/tex] in option A is the only one that is irrational. Hence, the answer to the question "Which number is irrational?" is:
A. [tex]\(\pi\)[/tex]
Let's examine each option:
### Option A: [tex]$\pi$[/tex]
- [tex]$\pi$[/tex] (Pi) is a well-known mathematical constant that represents the ratio of a circle's circumference to its diameter.
- The decimal representation of [tex]$\pi$[/tex] is approximately 3.1415926535..., and it continues infinitely without repeating.
- [tex]$\pi$[/tex] cannot be expressed as a fraction of two integers, hence it is an irrational number.
### Option B: 0.7
- 0.7 is a finite decimal.
- It can be expressed as the fraction [tex]\(\frac{7}{10}\)[/tex], which is a ratio of two integers.
- Therefore, 0.7 is a rational number.
### Option C: 0.277277277...
- The number 0.277277277... is a repeating decimal.
- This can be expressed as the fraction [tex]\(\frac{277}{999}\)[/tex] (or in another form after simplifying, but it is clearly a ratio of two integers).
- Thus, 0.277277277... is a rational number.
### Option D: [tex]$0.333...$[/tex]
- The number 0.333... is also a repeating decimal.
- This can be expressed as the fraction [tex]\(\frac{1}{3}\)[/tex].
- Therefore, 0.333... is a rational number.
From this analysis, we can conclude that the number [tex]$\pi$[/tex] in option A is the only one that is irrational. Hence, the answer to the question "Which number is irrational?" is:
A. [tex]\(\pi\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.