Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve this step-by-step to fill in the blanks with appropriate mathematical expressions and results.
1. Height of the pyramid:
Given that the height of the pyramid is 3 times longer than the base edge [tex]\( x \)[/tex]:
[tex]\[ \text{Height of the pyramid} = 3x \][/tex]
2. Area of an equilateral triangle with side length [tex]\( x \)[/tex]:
The formula for the area of an equilateral triangle is:
[tex]\[ \text{Area of an equilateral triangle} = \frac{x^2 \sqrt{3}}{4} \text{ units}^2 \][/tex]
3. Area of the hexagon base:
Since the hexagon is composed of 6 equilateral triangles, its area is 6 times the area of one equilateral triangle:
[tex]\[ \text{Area of the hexagon base} = 6 \times \frac{x^2 \sqrt{3}}{4} = \frac{6x^2 \sqrt{3}}{4} = \frac{3x^2 \sqrt{3}}{2} \][/tex]
4. Volume of the pyramid:
The formula for the volume of a pyramid is:
[tex]\[ \text{Volume of the pyramid} = \frac{1}{3} \times \text{area of the base} \times \text{height} \][/tex]
Substituting the area of the hexagon and the height of the pyramid:
[tex]\[ \text{Volume of the pyramid} = \frac{1}{3} \times \frac{3x^2 \sqrt{3}}{2} \times 3x = \frac{1}{3} \times 3x^3 \sqrt{3} = x^3 \sqrt{3} \][/tex]
So, let's summarize and fill in the blanks with these calculations:
Given the length of the base edge of a pyramid with a regular hexagon base is represented as [tex]\( x \)[/tex], the height of the pyramid is 3 times longer than the base edge.
- The height of the pyramid can be represented as [tex]\( 3x \)[/tex].
- The area of an equilateral triangle with side length [tex]\( x \)[/tex] is [tex]\( \frac{x^2 \sqrt{3}}{4} \)[/tex] units[tex]\(^2\)[/tex].
- The area of the hexagon base is 6 times the area of one equilateral triangle.
- The volume of the pyramid is [tex]\( x^3 \sqrt{3} \)[/tex] cubic units.
1. Height of the pyramid:
Given that the height of the pyramid is 3 times longer than the base edge [tex]\( x \)[/tex]:
[tex]\[ \text{Height of the pyramid} = 3x \][/tex]
2. Area of an equilateral triangle with side length [tex]\( x \)[/tex]:
The formula for the area of an equilateral triangle is:
[tex]\[ \text{Area of an equilateral triangle} = \frac{x^2 \sqrt{3}}{4} \text{ units}^2 \][/tex]
3. Area of the hexagon base:
Since the hexagon is composed of 6 equilateral triangles, its area is 6 times the area of one equilateral triangle:
[tex]\[ \text{Area of the hexagon base} = 6 \times \frac{x^2 \sqrt{3}}{4} = \frac{6x^2 \sqrt{3}}{4} = \frac{3x^2 \sqrt{3}}{2} \][/tex]
4. Volume of the pyramid:
The formula for the volume of a pyramid is:
[tex]\[ \text{Volume of the pyramid} = \frac{1}{3} \times \text{area of the base} \times \text{height} \][/tex]
Substituting the area of the hexagon and the height of the pyramid:
[tex]\[ \text{Volume of the pyramid} = \frac{1}{3} \times \frac{3x^2 \sqrt{3}}{2} \times 3x = \frac{1}{3} \times 3x^3 \sqrt{3} = x^3 \sqrt{3} \][/tex]
So, let's summarize and fill in the blanks with these calculations:
Given the length of the base edge of a pyramid with a regular hexagon base is represented as [tex]\( x \)[/tex], the height of the pyramid is 3 times longer than the base edge.
- The height of the pyramid can be represented as [tex]\( 3x \)[/tex].
- The area of an equilateral triangle with side length [tex]\( x \)[/tex] is [tex]\( \frac{x^2 \sqrt{3}}{4} \)[/tex] units[tex]\(^2\)[/tex].
- The area of the hexagon base is 6 times the area of one equilateral triangle.
- The volume of the pyramid is [tex]\( x^3 \sqrt{3} \)[/tex] cubic units.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.