Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line given by the equation [tex]\(y = -\frac{4}{3}x - 1\)[/tex], follow these steps:
1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].
2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].
4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]
5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]
6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].
1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].
2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].
4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]
5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]
6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.