Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's consider the scenario where an officer is accelerating at a constant rate. We are provided with the officer's acceleration and need to determine the distance she travels during a specific period.
### Step-by-Step Solution:
1. Given Data:
- Acceleration of the officer, [tex]\(a = 4.8 \text{ m/s}^2\)[/tex]
- Initial velocity of the officer, [tex]\(u = 0 \text{ m/s}\)[/tex] (assuming the officer started from rest)
- Time, [tex]\(t = 10 \text{ seconds}\)[/tex] (an arbitrary time frame to calculate the distance traveled)
2. Formula for Distance with Constant Acceleration:
We will use the kinematic equation for distance traveled under constant acceleration:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Where:
- [tex]\(s\)[/tex] is the distance traveled
- [tex]\(u\)[/tex] is the initial velocity
- [tex]\(a\)[/tex] is the acceleration
- [tex]\(t\)[/tex] is the time
3. Substitute the Given Values:
Plugging in the values from the given data into the formula:
[tex]\[ u = 0 \text{ m/s} \][/tex]
[tex]\[ a = 4.8 \text{ m/s}^2 \][/tex]
[tex]\[ t = 10 \text{ seconds} \][/tex]
The equation becomes:
[tex]\[ s = (0 \text{ m/s}) (10 \text{ s}) + \frac{1}{2} (4.8 \text{ m/s}^2) (10 \text{ s})^2 \][/tex]
4. Calculate the Distance:
First, calculate the second term:
[tex]\[ \frac{1}{2} \times 4.8 \text{ m/s}^2 \times (10 \text{ s})^2 \][/tex]
[tex]\[ \frac{1}{2} \times 4.8 \times 100 \][/tex]
[tex]\[ \frac{1}{2} \times 480 \][/tex]
[tex]\[ 240 \text{ meters} \][/tex]
Thus, the distance the officer travels before catching up with the car is:
[tex]\[ \boxed{240 \text{ meters}} \][/tex]
### Step-by-Step Solution:
1. Given Data:
- Acceleration of the officer, [tex]\(a = 4.8 \text{ m/s}^2\)[/tex]
- Initial velocity of the officer, [tex]\(u = 0 \text{ m/s}\)[/tex] (assuming the officer started from rest)
- Time, [tex]\(t = 10 \text{ seconds}\)[/tex] (an arbitrary time frame to calculate the distance traveled)
2. Formula for Distance with Constant Acceleration:
We will use the kinematic equation for distance traveled under constant acceleration:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Where:
- [tex]\(s\)[/tex] is the distance traveled
- [tex]\(u\)[/tex] is the initial velocity
- [tex]\(a\)[/tex] is the acceleration
- [tex]\(t\)[/tex] is the time
3. Substitute the Given Values:
Plugging in the values from the given data into the formula:
[tex]\[ u = 0 \text{ m/s} \][/tex]
[tex]\[ a = 4.8 \text{ m/s}^2 \][/tex]
[tex]\[ t = 10 \text{ seconds} \][/tex]
The equation becomes:
[tex]\[ s = (0 \text{ m/s}) (10 \text{ s}) + \frac{1}{2} (4.8 \text{ m/s}^2) (10 \text{ s})^2 \][/tex]
4. Calculate the Distance:
First, calculate the second term:
[tex]\[ \frac{1}{2} \times 4.8 \text{ m/s}^2 \times (10 \text{ s})^2 \][/tex]
[tex]\[ \frac{1}{2} \times 4.8 \times 100 \][/tex]
[tex]\[ \frac{1}{2} \times 480 \][/tex]
[tex]\[ 240 \text{ meters} \][/tex]
Thus, the distance the officer travels before catching up with the car is:
[tex]\[ \boxed{240 \text{ meters}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.