At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the type of transformation represented by the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex], we need to identify the geometric change that the coordinates undergo.
1. Understanding the Transformation Rule:
- The given transformation rule is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- This means that the point originally at [tex]\((x, y)\)[/tex] moves to a new location [tex]\((y, -x)\)[/tex].
2. Analyzing the New Coordinates:
- For a point [tex]\((x, y)\)[/tex], if we transform it according to the rule [tex]\((y, -x)\)[/tex], we observe:
- The [tex]\(x\)[/tex]-coordinate becomes the new [tex]\(y\)[/tex]-coordinate.
- The [tex]\(y\)[/tex]-coordinate becomes the negative of the new [tex]\(x\)[/tex]-coordinate.
3. Identifying the Rotation:
- In the coordinate plane, one common transformation that changes [tex]\((x, y)\)[/tex] to [tex]\((y, -x)\)[/tex] is a 90-degree counterclockwise rotation about the origin.
4. Verifying with Standard Rotation Matrices:
- A 90-degree counterclockwise rotation transformation can be written as:
[tex]\[ (x, y) \rightarrow (y, -x) \][/tex]
- This matches the given rule exactly.
5. Confirming the Transformation Type:
- Therefore, we conclude that the transformation described by [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is equivalent to a 90-degree counterclockwise rotation about the origin.
6. Final Answer:
- The transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is another way to state the rotation denoted by [tex]\( R_{0,90^{\circ}} \)[/tex].
Thus, the correct transformation is:
[tex]\[ \boxed{R_{0,90^{\circ}}} \][/tex]
1. Understanding the Transformation Rule:
- The given transformation rule is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- This means that the point originally at [tex]\((x, y)\)[/tex] moves to a new location [tex]\((y, -x)\)[/tex].
2. Analyzing the New Coordinates:
- For a point [tex]\((x, y)\)[/tex], if we transform it according to the rule [tex]\((y, -x)\)[/tex], we observe:
- The [tex]\(x\)[/tex]-coordinate becomes the new [tex]\(y\)[/tex]-coordinate.
- The [tex]\(y\)[/tex]-coordinate becomes the negative of the new [tex]\(x\)[/tex]-coordinate.
3. Identifying the Rotation:
- In the coordinate plane, one common transformation that changes [tex]\((x, y)\)[/tex] to [tex]\((y, -x)\)[/tex] is a 90-degree counterclockwise rotation about the origin.
4. Verifying with Standard Rotation Matrices:
- A 90-degree counterclockwise rotation transformation can be written as:
[tex]\[ (x, y) \rightarrow (y, -x) \][/tex]
- This matches the given rule exactly.
5. Confirming the Transformation Type:
- Therefore, we conclude that the transformation described by [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is equivalent to a 90-degree counterclockwise rotation about the origin.
6. Final Answer:
- The transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is another way to state the rotation denoted by [tex]\( R_{0,90^{\circ}} \)[/tex].
Thus, the correct transformation is:
[tex]\[ \boxed{R_{0,90^{\circ}}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.