At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To identify the base-conjugate acid pair in the given reaction, it's essential to understand the concept of acid-base conjugation. In a chemical reaction involving acids and bases:
- An acid loses a proton (H⁺) to form its conjugate base.
- A base gains a proton (H⁺) to form its conjugate acid.
Let's analyze the given reaction:
[tex]\[ \text{H}_2\text{PO}_4^- + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HPO}_4^{2-} \][/tex]
From this reaction:
- Di-hydrogen phosphate ([tex]\(\text{H}_2\text{PO}_4^-\)[/tex]) is reacting with water ([tex]\(\text{H}_2\text{O}\)[/tex]).
- The product formed includes hydronium ([tex]\(\text{H}_3\text{O}^+\)[/tex]) and hydrogen phosphate ([tex]\(\text{HPO}_4^{2-}\)[/tex]).
Let's identify what gains or loses a proton:
- [tex]\(\text{H}_2\text{PO}_4^-\)[/tex] loses a proton (H⁺) to form [tex]\(\text{HPO}_4^{2-}\)[/tex]. Therefore, [tex]\(\text{H}_2\text{PO}_4^-\)[/tex] is acting as an acid, and [tex]\(\text{HPO}_4^{2-}\)[/tex] is its conjugate base.
- [tex]\(\text{H}_2\text{O}\)[/tex] gains a proton (H⁺) to form [tex]\(\text{H}_3\text{O}^+\)[/tex]. Thus, [tex]\(\text{H}_2\text{O}\)[/tex] is acting as a base, and [tex]\(\text{H}_3\text{O}^+\)[/tex] is its conjugate acid.
Considering the options provided:
1. [tex]\( \text{H}_2\text{O} \)[/tex] and [tex]\( \text{H}_3\text{O}^+ \)[/tex] form a conjugate base-acid pair.
2. [tex]\( \text{H}_2\text{O} \)[/tex] and [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] do not form a conjugate pair.
3. [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] and [tex]\( \text{HPO}_4^{2-} \)[/tex] form a conjugate acid-base pair.
4. [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] and [tex]\( \text{H}_3\text{O}^+ \)[/tex] do not form a conjugate pair.
The correct pair that forms a base-conjugate acid pair in the given reaction is:
[tex]\[ \text{H}_2\text{PO}_4^- \text{ and } \text{HPO}_4^{2-} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{3} \][/tex]
- An acid loses a proton (H⁺) to form its conjugate base.
- A base gains a proton (H⁺) to form its conjugate acid.
Let's analyze the given reaction:
[tex]\[ \text{H}_2\text{PO}_4^- + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HPO}_4^{2-} \][/tex]
From this reaction:
- Di-hydrogen phosphate ([tex]\(\text{H}_2\text{PO}_4^-\)[/tex]) is reacting with water ([tex]\(\text{H}_2\text{O}\)[/tex]).
- The product formed includes hydronium ([tex]\(\text{H}_3\text{O}^+\)[/tex]) and hydrogen phosphate ([tex]\(\text{HPO}_4^{2-}\)[/tex]).
Let's identify what gains or loses a proton:
- [tex]\(\text{H}_2\text{PO}_4^-\)[/tex] loses a proton (H⁺) to form [tex]\(\text{HPO}_4^{2-}\)[/tex]. Therefore, [tex]\(\text{H}_2\text{PO}_4^-\)[/tex] is acting as an acid, and [tex]\(\text{HPO}_4^{2-}\)[/tex] is its conjugate base.
- [tex]\(\text{H}_2\text{O}\)[/tex] gains a proton (H⁺) to form [tex]\(\text{H}_3\text{O}^+\)[/tex]. Thus, [tex]\(\text{H}_2\text{O}\)[/tex] is acting as a base, and [tex]\(\text{H}_3\text{O}^+\)[/tex] is its conjugate acid.
Considering the options provided:
1. [tex]\( \text{H}_2\text{O} \)[/tex] and [tex]\( \text{H}_3\text{O}^+ \)[/tex] form a conjugate base-acid pair.
2. [tex]\( \text{H}_2\text{O} \)[/tex] and [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] do not form a conjugate pair.
3. [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] and [tex]\( \text{HPO}_4^{2-} \)[/tex] form a conjugate acid-base pair.
4. [tex]\( \text{H}_2\text{PO}_4^- \)[/tex] and [tex]\( \text{H}_3\text{O}^+ \)[/tex] do not form a conjugate pair.
The correct pair that forms a base-conjugate acid pair in the given reaction is:
[tex]\[ \text{H}_2\text{PO}_4^- \text{ and } \text{HPO}_4^{2-} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.