Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright! Let’s walk through the solution step-by-step to determine which equation can be factored and solved for the smaller integer when the product of two consecutive integers is 72.
1. Understanding the Problem:
- The problem states we have two consecutive integers whose product is 72.
- Let's denote these two consecutive integers by [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex] where [tex]\( x \)[/tex] is the smaller integer.
2. Setting Up the Equation:
- Given the consecutive integers are [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex], their product can be expressed by the equation:
[tex]\[ x(x + 1) = 72 \][/tex]
3. Forming a Quadratic Equation:
- Expanding this equation:
[tex]\[ x(x + 1) = x^2 + x \][/tex]
- Thus, the equation becomes:
[tex]\[ x^2 + x = 72 \][/tex]
- To form a standard quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we move 72 to the left side of the equation:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
4. Comparing with Given Choices:
- The equation we derived is [tex]\( x^2 + x - 72 = 0 \)[/tex].
- Checking the given options:
- [tex]\( x^2 + x - 72 = 0 \)[/tex]
- [tex]\( x^2 + x + 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x - 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x + 72 = 0 \)[/tex]
The correct equation that we have derived and matches one of the given choices is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
5. Solving the Quadratic Equation:
- To find the smaller integer [tex]\( x \)[/tex], solve the quadratic equation [tex]\( x^2 + x - 72 = 0 \)[/tex].
- The solutions to this equation are [tex]\( x = -9 \)[/tex] and [tex]\( x = 8 \)[/tex].
Therefore, the equation that can be factored and solved for the smaller integer is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
1. Understanding the Problem:
- The problem states we have two consecutive integers whose product is 72.
- Let's denote these two consecutive integers by [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex] where [tex]\( x \)[/tex] is the smaller integer.
2. Setting Up the Equation:
- Given the consecutive integers are [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex], their product can be expressed by the equation:
[tex]\[ x(x + 1) = 72 \][/tex]
3. Forming a Quadratic Equation:
- Expanding this equation:
[tex]\[ x(x + 1) = x^2 + x \][/tex]
- Thus, the equation becomes:
[tex]\[ x^2 + x = 72 \][/tex]
- To form a standard quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we move 72 to the left side of the equation:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
4. Comparing with Given Choices:
- The equation we derived is [tex]\( x^2 + x - 72 = 0 \)[/tex].
- Checking the given options:
- [tex]\( x^2 + x - 72 = 0 \)[/tex]
- [tex]\( x^2 + x + 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x - 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x + 72 = 0 \)[/tex]
The correct equation that we have derived and matches one of the given choices is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
5. Solving the Quadratic Equation:
- To find the smaller integer [tex]\( x \)[/tex], solve the quadratic equation [tex]\( x^2 + x - 72 = 0 \)[/tex].
- The solutions to this equation are [tex]\( x = -9 \)[/tex] and [tex]\( x = 8 \)[/tex].
Therefore, the equation that can be factored and solved for the smaller integer is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.