Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the two different angle measures of the parallelogram-shaped tile, let's go through the problem step-by-step.
Given that two opposite angles of the parallelogram are [tex]\( (6n - 70)^\circ \)[/tex] and [tex]\( (2n + 10)^\circ \)[/tex], we know that these angles must be equal because opposite angles in a parallelogram are always equal.
1. Set the angles equal to each other:
[tex]\[ 6n - 70 = 2n + 10 \][/tex]
2. Solve for [tex]\( n \)[/tex]:
[tex]\[ 6n - 2n = 10 + 70 \][/tex]
Simplify the equation:
[tex]\[ 4n = 80 \][/tex]
Divide by 4:
[tex]\[ n = 20 \][/tex]
3. Calculate the angles using [tex]\( n = 20 \)[/tex]:
[tex]\[ \text{First angle} = 6n - 70 = 6(20) - 70 = 120 - 70 = 50^\circ \][/tex]
[tex]\[ \text{Second angle} = 2n + 10 = 2(20) + 10 = 40 + 10 = 50^\circ \][/tex]
4. Since opposite angles in a parallelogram are equal, we have:
[tex]\[ \text{Angle 1} = \text{Angle 2} = 50^\circ \][/tex]
5. In a parallelogram, consecutive angles are supplementary (they add up to [tex]\(180^\circ\)[/tex]). Therefore, the other two angles are:
[tex]\[ \text{Angle 3} = 180^\circ - 50^\circ = 130^\circ \][/tex]
[tex]\[ \text{Angle 4} = 180^\circ - 50^\circ = 130^\circ \][/tex]
6. Conclusion:
The two different angle measures of the parallelogram-shaped tile are [tex]\( 50^\circ \)[/tex] and [tex]\( 130^\circ \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{50^\circ \text{ and } 130^\circ} \][/tex]
Given that two opposite angles of the parallelogram are [tex]\( (6n - 70)^\circ \)[/tex] and [tex]\( (2n + 10)^\circ \)[/tex], we know that these angles must be equal because opposite angles in a parallelogram are always equal.
1. Set the angles equal to each other:
[tex]\[ 6n - 70 = 2n + 10 \][/tex]
2. Solve for [tex]\( n \)[/tex]:
[tex]\[ 6n - 2n = 10 + 70 \][/tex]
Simplify the equation:
[tex]\[ 4n = 80 \][/tex]
Divide by 4:
[tex]\[ n = 20 \][/tex]
3. Calculate the angles using [tex]\( n = 20 \)[/tex]:
[tex]\[ \text{First angle} = 6n - 70 = 6(20) - 70 = 120 - 70 = 50^\circ \][/tex]
[tex]\[ \text{Second angle} = 2n + 10 = 2(20) + 10 = 40 + 10 = 50^\circ \][/tex]
4. Since opposite angles in a parallelogram are equal, we have:
[tex]\[ \text{Angle 1} = \text{Angle 2} = 50^\circ \][/tex]
5. In a parallelogram, consecutive angles are supplementary (they add up to [tex]\(180^\circ\)[/tex]). Therefore, the other two angles are:
[tex]\[ \text{Angle 3} = 180^\circ - 50^\circ = 130^\circ \][/tex]
[tex]\[ \text{Angle 4} = 180^\circ - 50^\circ = 130^\circ \][/tex]
6. Conclusion:
The two different angle measures of the parallelogram-shaped tile are [tex]\( 50^\circ \)[/tex] and [tex]\( 130^\circ \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{50^\circ \text{ and } 130^\circ} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.